83 research outputs found
Socio-Economic Instability and the Scaling of Energy Use with Population Size
The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system
The Association Between Pre-pregnancy BMI and Preterm Delivery in a Diverse Southern California Population of Working Women
Whereas preterm birth has consistently been associated with low maternal pre-pregnancy weight, the relationship with high pre-pregnancy weight has been inconsistent. We quantified the pre-pregnancy BMI—preterm delivery (PTD) relationship using traditional BMI categories (underweight, normal weight, overweight and obese) as well as continuous BMI. Eligible women participated in California’s statewide prenatal screening program, worked during pregnancy, and delivered a live singleton birth in Southern California in 2002–2003. The final analytic sample included 354 cases delivering at <37 weeks, as identified by clinical estimate of gestational age from screening records, and 710 term normal-birthweight controls. Multivariable logistic regression models using categorical BMI levels and continuous BMI were compared. In categorical analyses, PTD was significantly associated with pre-pregnancy underweight only. Nonparametric local regression revealed a V-shaped relationship between continuous BMI and PTD, with minimum risk at the high end of normal, around 24 kg/m2. The odds ratio (OR) for PTD associated with low BMI within the normal range (19 kg/m2) was 2.84 (95%CI = 1.61–5.01); ORs for higher BMI in the overweight (29 kg/m2) and obese (34 kg/m2) ranges were 1.42 (95%CI = 1.10–1.84) and 2.01 (95% CI = 1.20–3.39) respectively, relative to 24 kg/m2). BMI categories obscured the preterm delivery risk associated with low-normal, overweight, and obese BMI. We found that higher BMI up to around 24 kg/m2 is increasingly protective of preterm delivery, beyond which a higher body mass index becomes detrimental. Current NHLBI/WHO BMI categories may be inadequate for identifying women at higher risk for PTD
Long-Distance Signals Are Required for Morphogenesis of the Regenerating Xenopus Tadpole Tail, as Shown by Femtosecond-Laser Ablation
tadpoles has recently emerged as an important model for these studies; we explored the role of the spinal cord during tadpole tail regeneration.Using ultrafast lasers to ablate cells, and Geometric Morphometrics to quantitatively analyze regenerate morphology, we explored the influence of different cell populations. For at least twenty-four hours after amputation (hpa), laser-induced damage to the dorsal midline affected the morphology of the regenerated tail; damage induced 48 hpa or later did not. Targeting different positions along the anterior-posterior (AP) axis caused different shape changes in the regenerate. Interestingly, damaging two positions affected regenerate morphology in a qualitatively different way than did damaging either position alone. Quantitative comparison of regenerate shapes provided strong evidence against a gradient and for the existence of position-specific morphogenetic information along the entire AP axis.We infer that there is a conduit of morphology-influencing information that requires a continuous dorsal midline, particularly an undamaged spinal cord. Contrary to expectation, this information is not in a gradient and it is not localized to the regeneration bud. We present a model of morphogenetic information flow from tissue undamaged by amputation and conclude that studies of information coming from far outside the amputation plane and regeneration bud will be critical for understanding regeneration and for translating fundamental understanding into biomedical approaches
Emergency department spirometric volume and base deficit delineate risk for torso injury in stable patients
BACKGROUND: We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate), and impaired pulmonary physiology (decreased spirometric volume and PaO(2)/FiO(2)). METHODS: Level I trauma center prospective pilot and post-pilot study (2000–2001) of stable patients. Increased base deficit was < 0.0 in ethanol-negative and ≤ -3.0 in ethanol-positive patients. Increased lactate was > 2.5 mmol/L in ethanol-negative and ≥ 3.0 mmol/L in ethanol-positive patients. Decreased PaO(2)/FiO(2 )was < 350 and decreased spirometric volume was < 1.8 L. RESULTS: Of 215 patients, 66 (30.7%) had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43). Glasgow Coma Scale score was 14.8 ± 0.5 (13–15). Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO(2)/FiO(2), and spirometric volume – 0.0% & 0.0%; normal base deficit and normal spirometric volume – 4.2% & 4.5%; chest/abdominal soft tissue injury – 37.8% & 47.0%; increased lactate – 39.7% & 47.0%; increased base deficit – 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume – 43.8% & 95.5%; decreased PaO(2)/FiO(2 )– 48.9% & 33.3%; positive abdominal ultrasound – 62.5% & 7.6%; decreased spirometric volume – 73.4% & 71.2%; increased base deficit and decreased spirometric volume – 82.9% & 51.5%. CONCLUSIONS: Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO(2)/FiO(2), or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury
The X-Ray Crystal Structure of Escherichia coli Succinic Semialdehyde Dehydrogenase; Structural Insights into NADP+/Enzyme Interactions
In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and gamma-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells.Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site.Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease
Significance testing as perverse probabilistic reasoning
Truth claims in the medical literature rely heavily on statistical significance testing. Unfortunately, most physicians misunderstand the underlying probabilistic logic of significance tests and consequently often misinterpret their results. This near-universal misunderstanding is highlighted by means of a simple quiz which we administered to 246 physicians at two major academic hospitals, on which the proportion of incorrect responses exceeded 90%. A solid understanding of the fundamental concepts of probability theory is becoming essential to the rational interpretation of medical information. This essay provides a technically sound review of these concepts that is accessible to a medical audience. We also briefly review the debate in the cognitive sciences regarding physicians' aptitude for probabilistic inference
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Wellbeing and resilience:Mechanisms of transmission of health and risk in parents with complex mental health problems and their offspring—The WARM Study
The WARM study is a longitudinal cohort study following infants of mothers with schizophrenia, bipolar disorder, depression and control from pregnancy to infant 1 year of age.
Background:
Children of parents diagnosed with complex mental health problems including schizophrenia, bipolar disorder and depression, are at increased risk of developing mental health problems compared to the general population. Little is known regarding the early developmental trajectories of infants who are at ultra-high risk and in particular the balance of risk and protective factors expressed in the quality of early caregiver-interaction.
Methods/Design:
We are establishing a cohort of pregnant women with a lifetime diagnosis of schizophrenia, bipolar disorder, major depressive disorder and a non-psychiatric control group. Factors in the parents, the infant and the social environment will be evaluated at 1, 4, 16 and 52 weeks in terms of evolution of very early indicators of developmental risk and resilience focusing on three possible environmental transmission mechanisms: stress, maternal caregiver representation, and caregiver-infant interaction.
Discussion:
The study will provide data on very early risk developmental status and associated psychosocial risk factors, which will be important for developing targeted preventive interventions for infants of parents with severe mental disorder
- …