8 research outputs found

    The X-Ray Crystal Structure of Escherichia coli Succinic Semialdehyde Dehydrogenase; Structural Insights into NADP+/Enzyme Interactions

    Get PDF
    In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and gamma-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells.Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site.Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease

    Venous Thromboembolism During Treatment with Antipsychotics: A Review of Current Evidence

    Get PDF
    This article summarises the current evidence on the risk of venous thromboembolism (VTE) with the use of antipsychotics. An increasing number of observational studies indicate an elevated risk of VTE in antipsychotic drug users. Although the use of certain antipsychotics has been associated with VTE, current data can neither conclusively verify differences in occurrence rates of VTE between first- and second-generation antipsychotics or between individual compounds, nor identify which antipsychotic drugs have the lowest risk of VTE. The biological mechanisms involved in the pathogenesis of this adverse drug reaction are still to be clarified but hypotheses such as drug-induced sedation, obesity, increased levels of antiphospholipid antibodies, enhanced platelet aggregation, hyperhomocysteinaemia and hyperprolactinaemia have been suggested. Risk factors associated with the underlying psychiatric disorder may at least partly explain the increased risk. Physicians should be aware of this potentially serious and even sometimes fatal adverse drug reaction and should consider discontinuing or switching the antipsychotic treatment in patients experiencing a VTE. Even though supporting evidence is limited, prophylactic antithrombotic treatment should be considered in risk situations for VTE

    HIV Encephalopathy: Clinical and Diagnostic Considerations

    No full text

    Current Methods for the Treatment and Prevention of Drug-Induced Parkinsonism and Tardive Dyskinesia in the Elderly

    No full text
    corecore