7 research outputs found

    Ecophysiology of photosynthesis in macroalgae

    No full text
    Macroalgae occur in the marine benthos from the upper intertidal to depths of more than 200 m, contributing up to 1 Pg C per year to global primary productivity. Freshwater macroalgae are mainly green (Chlorophyta) with some red (Rhodophyta) and a small contribution of brown (Phaeophyceae) algae, while in the ocean all three higher taxa are important. Attempts to relate the depth distribution of three higher taxa of marine macroalgae to their photosynthetic light use through their pigmentation in relation to variations in spectral quality of photosynthetically active radiation (PAR) with depth (complementary chromatic adaptation) and optical thickness (package effect) have been relatively unsuccessful. The presence (Chlorophyta, Phaeophyceae) or absence (Rhodophyta) of a xanthophyll cycle is also not well correlated with depth distribution of marine algae. The relative absence of freshwater brown algae does not seem to be related to their photosynthetic light use. Photosynthetic inorganic carbon acquisition in some red and a few green macroalgae involves entry of CO2 by diffusion. Other red and green macroalgae, and brown macroalgae, have CO2 concentrating mechanisms; these frequently involve acid and alkaline zones on the surface of the alga with CO2 (produced from HCO3-) entering in the acid zones, while some macroalgae have CCMs based on active influx of HCO3-. These various mechanisms of carbon acquisition have different responses to the thickness of the diffusion boundary layer, which is determined by macroalgal morphology and water velocity. Energetic predictions that macroalgae growing at or near the lower limit of PAR for growth should rely on diffusive CO2 entry without acid and alkaline zones, and on NH 4+ rather than NO3- as nitrogen source, are only partially borne out by observation. The impact of global environmental change on marine macroalgae mainly relates to ocean acidification and warming with shoaling of the thermocline and decreased nutrient flux to the upper mixed layer. Predictions of the impact on macroalgae requires further experiments on interactions among increased inorganic carbon, increased temperature and decreased nitrogen and phosphorus supply, and, when possible, studies of genetic adaptation to environmental change. © 2012 Springer Science+Business Media B.V

    Sustainable Agriculture in Saline-Arid and Semiarid by Use Potential of AM Fungi on Mitigates NaCl Effects

    No full text

    Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change

    No full text
    The necessity to adapt to climate change is even stronger for grapevine than for other crops, because grape berry composition—a key determinant of fruit and wine quality, typicity and market value— highly depends on “terroir” (complete natural environment), on vintage (annual climate variability), and on their interactions. In the same time, there is a strong demand to reduce the use of pesticides. Thus, the equation that breeders and grape growers must solve has three entries that cannot be dissociated: adaptation to climate change, reduction of pesticides, and maintenance of wine typicity. Although vineyard management may cope to some extent to the short–medium-term effects of climate change, genetic improvement is necessary to provide long-term sustainable solutions to these problems. Most vineyards over the world are planted using vines that harbor two grafted plants’ genomes. Although this makes the range of interactions (scion-atmosphere, rootstock-soil, scion-rootstock) more complex, it also opens up wider possibilities for the genetic improvement of either or both the grafted genotypes. Positive aspects related to grapevine breeding are as follows: (a) a wide genetic diversity of rootstocks and scions that has not been thoroughly explored yet; (b) progress in sequencing technologies that allows high-throughput sequencing of entire genomes, faster mapping of targeted traits and easier determination of genetic relationships; (c) progress in new breeding technologies that potentially permit precise modifications on resident genes; (d) automation of phenotyping that allows faster and more complete monitoring of many traits on relatively large plant populations; (e) functional characterization of an increasing number of genes involved in the control of development, berry metabolism, disease resistance, and adaptation to environment. Difficulties involve: (a) the perennial nature and the large size of the plant that makes field testing long and demanding in manpower; (b) the low efficiency of transformation, regeneration and small size of breeding populations; (c) the complexity of the adaptive traits and the need to define more clearly future ideotypes; (d) the lack of shared and integrative platforms allowing a complete appraisal of the genotype-phenotype-environmental links; (e) legal, market and consumer acceptance of new genotypes. The present chapter provides an overview of suitable strategies and challenges linked to the adaptation of viticulture to a changing environment
    corecore