14 research outputs found

    Colonyzer: automated quantification of micro-organism growth characteristics on solid agar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput screens comparing growth rates of arrays of distinct micro-organism cultures on solid agar are useful, rapid methods of quantifying genetic interactions. Growth rate is an informative phenotype which can be estimated by measuring cell densities at one or more times after inoculation. Precise estimates can be made by inoculating cultures onto agar and capturing cell density frequently by plate-scanning or photography, especially throughout the exponential growth phase, and summarising growth with a simple dynamic model (e.g. the logistic growth model). In order to parametrize such a model, a robust image analysis tool capable of capturing a wide range of cell densities from plate photographs is required.</p> <p>Results</p> <p>Colonyzer is a collection of image analysis algorithms for automatic quantification of the size, granularity, colour and location of micro-organism cultures grown on solid agar. Colonyzer is uniquely sensitive to extremely low cell densities photographed after dilute liquid culture inoculation (spotting) due to image segmentation using a mixed Gaussian model for plate-wide thresholding based on pixel intensity. Colonyzer is robust to slight experimental imperfections and corrects for lighting gradients which would otherwise introduce spatial bias to cell density estimates without the need for imaging dummy plates. Colonyzer is general enough to quantify cultures growing in any rectangular array format, either growing after pinning with a dense inoculum or growing with the irregular morphology characteristic of spotted cultures. Colonyzer was developed using the open source packages: Python, RPy and the Python Imaging Library and its source code and documentation are available on SourceForge under GNU General Public License. Colonyzer is adaptable to suit specific requirements: e.g. automatic detection of cultures at irregular locations on streaked plates for robotic picking, or decreasing analysis time by disabling components such as lighting correction or colour measures.</p> <p>Conclusion</p> <p>Colonyzer can automatically quantify culture growth from large batches of captured images of microbial cultures grown during genome-wide scans over the wide range of cell densities observable after highly dilute liquid spot inoculation, as well as after more concentrated pinning inoculation. Colonyzer is open-source, allowing users to assess it, adapt it to particular research requirements and to contribute to its development.</p

    Assessing the Impact of Alternative Voting Technologies on Multi-Party Elections: Design Features, Heuristic Processing and Voter Choice

    Get PDF
    This paper analyzes the influence of alternative voting technologies on electoral outcomes in multi-party systems. Using data from a field experiment conducted during the 2005 legislative election in Argentina, we examine the role of information effects associated with alternative voting devices on the support for the competing parties. We find that differences in the type of information displayed and how it was presented across devices favored some parties to the detriment of others. The impact of voting technologies was found to be larger than in two-party systems, and could lead to changes in election results. We conclude that authorities in countries moving to adopt new voting systems should carefully take the potential partisan advantages induced by different technologies into account when evaluating their implementation

    Differential DNA mismatch repair underlies mutation rate variation across the human genome

    No full text
    Cancer genome sequencing has revealed considerable variation in somatic mutation rates across the human genome, with mutation rates elevated in heterochromatic late replicating regions and reduced in early replicating euchromatin. Multiple mechanisms have been suggested to underlie this, but the actual cause is unknown. Here we identify variable DNA mismatch repair (MMR) as the basis of this variation. Analysing ∼17 million single-nucleotide variants from the genomes of 652 tumours, we show that regional autosomal mutation rates at megabase resolution are largely stable across cancer types, with differences related to changes in replication timing and gene expression. However, mutations arising after the inactivation of MMR are no longer enriched in late replicating heterochromatin relative to early replicating euchromatin. Thus, differential DNA repair and not differential mutation supply is the primary cause of the large-scale regional mutation rate variation across the human genome.This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (BFU2011-26206 and ‘Centro de Excelencia Severo Ochoa 2013-2017’ SEV-2012-0208), a European Research Council Consolidator grant IR-DC (616434), Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR),the EMBOYoung Investigator Program, the EMBL-CRG Systems Biology Program, FP7 project 4DCellFate (277899),FP7 project MAESTRA (ICT-2013-612944)and by Marie Curie Actions
    corecore