15 research outputs found

    The Effects of Apolipoprotein F Deficiency on High Density Lipoprotein Cholesterol Metabolism in Mice

    Get PDF
    Apolipoprotein F (apoF) is 29 kilodalton secreted sialoglycoprotein that resides on the HDL and LDL fractions of human plasma. Human ApoF is also known as Lipid Transfer Inhibitor protein (LTIP) based on its ability to inhibit cholesteryl ester transfer protein (CETP)-mediated transfer events between lipoproteins. In contrast to other apolipoproteins, ApoF is predicted to lack strong amphipathic alpha helices and its true physiological function remains unknown. We previously showed that overexpression of Apolipoprotein F in mice reduced HDL cholesterol levels by 20–25% by accelerating clearance from the circulation. In order to investigate the effect of physiological levels of ApoF expression on HDL cholesterol metabolism, we generated ApoF deficient mice. Unexpectedly, deletion of ApoF had no substantial impact on plasma lipid concentrations, HDL size, lipid or protein composition. Sex-specific differences were observed in hepatic cholesterol content as well as serum cholesterol efflux capacity. Female ApoF KO mice had increased liver cholesteryl ester content relative to wild type controls on a chow diet (KO: 3.4+/−0.9 mg/dl vs. WT: 1.2+/−0.3 mg/dl, p<0.05). No differences were observed in ABCG1-mediated cholesterol efflux capacity in either sex. Interestingly, ApoB-depleted serum from male KO mice was less effective at promoting ABCA1-mediated cholesterol efflux from J774 macrophages relative to WT controls

    Beyond the genetics of HDL:why is HDL cholesterol inversely related to cardiovascular disease?

    Get PDF
    There is unequivocal evidence that high-density lipoprotein (HDL) cholesterol levels in plasma are inversely associated with the risk of cardiovascular disease (CVD). Studies of families with inherited HDL disorders and genetic association studies in general (and patient) population samples have identified a large number of factors that control HDL cholesterol levels. However, they have not resolved why HDL cholesterol and CVD are inversely related. A growing body of evidence from nongenetic studies shows that HDL in patients at increased risk of CVD has lost its protective properties and that increasing the cholesterol content of HDL does not result in the desired effects. Hopefully, these insights can help improve strategies to successfully intervene in HDL metabolism. It is clear that there is a need to revisit the HDL hypothesis in an unbiased manner. True insights into the molecular mechanisms that regulate plasma HDL cholesterol and triglycerides or control HDL function could provide the handholds that are needed to develop treatment for, e.g., type 2 diabetes and the metabolic syndrome. Especially genome-wide association studies have provided many candidate genes for such studies. In this review we have tried to cover the main molecular studies that have been produced over the past few years. It is clear that we are only at the very start of understanding how the newly identified factors may control HDL metabolism. In addition, the most recent findings underscore the intricate relations between HDL, triglyceride, and glucose metabolism indicating that these parameters need to be studied simultaneously

    Discovery of Novel Biomarker Candidates for Liver Fibrosis in Hepatitis C Patients: A Preliminary Study

    Get PDF
    Background: Liver biopsy is the reference standard for assessing liver fibrosis and no reliable non-invasive diagnostic approach is available to discriminate between the intermediate stages of fibrosis. Therefore suitable serological biomarkers of liver fibrosis are urgently needed. We used proteomics to identify novel fibrosis biomarkers in hepatitis C patients with different degrees of liver fibrosis.Methodology/Principal Findings: Proteins in plasma samples from healthy control individuals and patients with hepatitis C virus (HCV) induced cirrhosis were analysed using a proteomics technique: two dimensional gel electrophoresis (2-DE). This technique separated the proteins in plasma samples of control and cirrhotic patients and by visualizing the separated proteins we were able to identify proteins which were increasing or decreasing in hepatic cirrhosis. Identified markers were validated across all Ishak fibrosis stages and compared to the markers used in FibroTest, Enhanced Liver Fibrosis (ELF) test, Hepascore and FIBROSpect by Western blotting. Forty four candidate biomarkers for hepatic fibrosis were identified of which 20 were novel biomarkers of liver fibrosis. Western blot validation of all candidate markers using plasma samples from patients across all Ishak fibrosis scores showed that the markers which changed with increasing fibrosis most consistently included lipid transfer inhibitor protein, complement C3d, corticosteroid-binding globulin, apolipoprotein J and apolipoprotein L1. These five novel fibrosis markers which are secreted in blood showed a promising consistent change with increasing fibrosis stage when compared to the markers used for the FibroTest, ELF test, Hepascore and FIBROSpect. These markers will be further validated using a large clinical cohort.Conclusions/Significance: This study identifies 20 novel fibrosis biomarker candidates. The proteins identified may help to assess hepatic fibrosis and eliminate the need for invasive liver biopsies.</br

    TFEB regulates murine liver cell fate during development and regeneration

    Get PDF
    It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer

    Human plasma protein N-glycosylation

    Full text link

    Neuronal deficiency of ARV1 causes an autosomal recessive epileptic encephalopathy

    No full text
    We report an individual who presented with severe neurodevelopmental delay and an intractable infantile-onset seizure disorder. Exome sequencing identified a homozygous single nucleotide change that abolishes a splice donor site in the ARV1 gene (c.294+1G > A homozygous). This variant completely prevented splicing in minigene assays, and resulted in exon skipping and an in-frame deletion of 40 amino acids in primary human fibroblasts (NP_073623.1: p.(Lys59_Asn98del). The p.(Lys59_Asn98del) and previously reported p.(Gly189Arg) ARV1 variants were evaluated for protein expression and function. The p.(Gly189Arg) variant partially rescued the temperature-dependent growth defect in arv1Δ yeast, while p.(Lys59- Asn98del) completely failed to rescue at restrictive temperature. In contrast to wild type human ARV1, neither variant expressed detectable levels of protein in mammalian cells. Mice with a neuronal deletion of Arv1 recapitulated the human phenotype, exhibiting seizures and a severe survival defect in adulthood. Our data support ARV1 deficiency as a cause of autosomal recessive epileptic encephalopathy
    corecore