23 research outputs found
Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations
Microalgae of numerous heterotrophic genera (obligate or facultative) exhibit considerable metabolic versatility and flexibility but are currently underexploited in the biotechnological manufacturing of known plant-derived compounds, novel high-value biomolecules or enriched biomass. Highly efficient production of microalgal biomass without the need for light is now feasible in inexpensive, well-defined mineral medium, typically supplemented with glucose. Cell densities of more than 100 g l−1 cell dry weight have been achieved with Chlorella, Crypthecodinium and Galdieria species while controlling the addition of organic sources of carbon and energy in fedbatch mode. The ability of microalgae to adapt their metabolism to varying culture conditions provides opportunities to modify, control and thereby maximise the formation of targeted compounds with non-recombinant microalgae. This review outlines the critical aspects of cultivation technology and current best practices in the heterotrophic high-cell-density cultivation of microalgae. The primary topics include (1) the characteristics of microalgae that make them suitable for heterotrophic cultivation, (2) the appropriate chemical composition of mineral growth media, (3) the different strategies for fedbatch cultivations and (4) the principles behind the customisation of biomass composition. The review confirms that, although fundamental knowledge is now available, the development of efficient, economically feasible large-scale bioprocesses remains an obstacle to the commercialisation of this promising technology
Stable nuclear transformation of Eudorina elegans
Lerche K, Hallmann A. Stable nuclear transformation of Eudorina elegans. BMC Biotechnology. 2013;13(1): 11.UNLABELLED: ABSTRACT: BACKGROUND: A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii) and a multicellular alga with differentiated cell types (Volvox carteri). Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16-32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. RESULTS: Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3'-phosphotransferase VIII (aphVIII) gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc) gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold) at elevated temperatures. Long-term stability and both constitutive and inducible expression of the co-bombarded gluc gene was demonstrated by transcription analysis and bioluminescence assays. CONCLUSIONS: Heterologous flanking sequences, including promoters, work in E. elegans and permit both constitutive and inducible expression of heterologous genes. Stable nuclear transformation of E. elegans is now routine. Thus, we show that genetic engineering of a species is possible even without the resources of endogenous genes and promoters
Combining demography and genetic analysis to assess the population structure of an amphibian in a human-dominated landscape
In this article, we applied demographic and genetic approaches to assess how landscape features influence dispersal patterns and genetic structure of the common frog Rana temporaria in a landscape where anthropogenic perturbations are pervasive (urbanization and roads). We used a combination of GIS methods that integrate radiotracking and landscape configuration data, and simulation techniques in order to estimate the potential dispersal area around breeding patches. Additionally, genetic data provided indirect measures of dispersal and allowed to characterise the spatial genetic structure of ponds and the patterns of gene flow across the landscape. Although demographic simulations predicted six distinct groups of habitat patches within which movement can occur, genetic analyses suggested a different configuration. More precisely, BAPS5 spatial clustering method with ponds as the analysis unit detected five spatial clusters. Individual-based analyses were not able to detect significant genetic structure. We argue that (1) taking into account that each individual breeds in specific breeding patch allowed for better explanation of population functioning, (2) the discrepancy between direct (radiotracking) and indirect (genetic) estimates of subpopulations (breeding patches) is due to a recent landscape fragmentation (e.g. traffic increase). We discuss the future of this population in the face of increasing landscape fragmentation, focusing on the need for combining demographic and genetic approaches when evaluating the conservation status of population subjected to rapid landscape changes.</p