15 research outputs found

    The emerging role of ADAM metalloproteinases in immunity

    No full text
    Proteolysis is an irreversible physiological process that can result in the termination or activation of protein function. Many transmembrane proteins that are involved in the cellular communication between immune cells and structural cells-for example, Notch, CD23, CD44, and membrane-anchored cytokines and their receptors-are cleaved by the ADAM (a disintegrin and metalloproteinase) family of enzymes. Here, we review recent insights into the molecular activation, substrate specificity and function of ADAM proteins in the development and regulation of the immune system, with a particular focus on the roles of ADAM10 and ADAM17

    Hepatic microcirculation and mechanisms of portal hypertension.

    No full text
    The liver microcirculatory milieu, mainly composed of liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs) and hepatic macrophages, has an essential role in liver homeostasis, including in preserving hepatocyte function, regulating the vascular tone and controlling inflammation. Liver microcirculatory dysfunction is one of the key mechanisms that promotes the progression of chronic liver disease (also termed cirrhosis) and the development of its major clinical complication, portal hypertension. In the present Review, we describe the current knowledge of liver microcirculatory dysfunction in cirrhotic portal hypertension and appraise the preclinical models used to study the liver circulation. We also provide a comprehensive summary of the promising therapeutic options to target the liver microvasculature in cirrhosis
    corecore