29 research outputs found

    A Landscape and Climate Data Logistic Model of Tsetse Distribution in Kenya

    Get PDF
    , biologically transmitted by the tsetse fly in Africa, are a major cause of illness resulting in both high morbidity and mortality among humans, cattle, wild ungulates, and other species. However, tsetse fly distributions change rapidly due to environmental changes, and fine-scale distribution maps are few. Due to data scarcity, most presence/absence estimates in Kenya prior to 2000 are a combination of local reports, entomological knowledge, and topographic information. The availability of tsetse fly abundance data are limited, or at least have not been collected into aggregate, publicly available national datasets. Despite this limitation, other avenues exist for estimating tsetse distributions including remotely sensed data, climate information, and statistical tools.Here we present a logistic regression model of tsetse abundance. The goal of this model is to estimate the distribution of tsetse fly in Kenya in the year 2000, and to provide a method by which to anticipate their future distribution. Multiple predictor variables were tested for significance and for predictive power; ultimately, a parsimonious subset of variables was identified and used to construct the regression model with the 1973 tsetse map. These data were validated against year 2000 Food and Agriculture Organization (FAO) estimates. Mapcurves Goodness-Of-Fit scores were used to evaluate the modeled fly distribution against FAO estimates and against 1973 presence/absence data, each driven by appropriate climate data.Logistic regression can be effectively used to produce a model that projects fly abundance under elevated greenhouse gas scenarios. This model identifies potential areas for tsetse abandonment and expansion

    Triptans attenuate capsaicin-induced CREB phosphorylation within the trigeminal nucleus caudalis: a mechanism to prevent central sensitization?

    Get PDF
    The c-AMP-responsive element binding protein (CREB) and its phosphorylated product (P-CREB) are nuclear proteins expressed after stimulation of pain-producing areas of the spinal cord. There is evidence indicating that central sensitization within dorsal horn neurons is dependent on P-CREB transcriptional regulation. The objectives of the study were to investigate the expression of P-CREB in cells in rat trigeminal nucleus caudalis after noxious stimulation and to determine whether pre-treatment with specific anti-migraine agents modulate this expression. CREB and P-CREB labelling was investigated within the trigeminal caudalis by immunohistochemistry after capsaicin stimulation. Subsequently, the effect of i.v. pre-treatment with either sumatriptan (n = 5), or naratriptan (n = 7) on P-CREB expression was studied. Five animals pre-treated with i.v. normal saline were served as controls. CREB and P-CREB labelling was robust in all animal groups within Sp5C. Both naratriptan and sumatriptan decreased P-CREB expression (p = 0.0003 and 0.0013) within the Sp5C. Triptans attenuate activation of CREB within the central parts of the trigeminal system, thereby leading to potential inhibition of central sensitization. P-CREB may serve as a new marker for post-synaptic neuronal activation within Sp5C in animal models relevant to migraine

    Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels

    Full text link

    The Paget Bicentenary: An Australian perspective

    No full text

    Anthropogenic disturbance of deep-sea megabenthic assemblages: a study with Remotely-Operated Vehicles in the Faroe-Shetland Channel, NE Atlantic

    Get PDF
    The effects of local-scale anthropogenic disturbance from active drilling platforms on epibenthic megafaunal abundance, diversity and assemblage pattern were examined in two West of Shetland hydrocarbon fields at 420 m and 508 m water depth. These areas were selected to include a range of disturbance regimes and contrasting faunal assemblages associated with different temperature regimes. Remotely Operated Vehicle (ROV) video provided high-resolution megafaunal abundance and diversity data, which were related to the extent of visible disturbance from drilling spoil. These data, in conjunction with a study deeper in the Faroe-Shetland Channel, have allowed comparison of the effects of disturbance on megabenthos across a range of sites. Disturbance to megafaunal assemblages was found to be high within 50 m of the source of drill spoil and in areas where spoil was clearly visible on the seabed, with depressed abundances (Foinaven 1900 individuals ha-1; Schiehallion 2178 individuals ha-1) and diversity (H´ = 1.75 Foinaven; 1.12 Schiehallion) as a result of smothering effects. These effects extended to around 100 m from the source of disturbance, although this was variable, particularly with current regime and nature of drilling activity. Further from the source of disturbance, megafaunal assemblages became more typical of the background area with increased diversity (H´ = 2.02 Foinaven; 1.77 Schiehallion) and abundance (Foinaven 16484 individuals ha-1; Schiehallion 5477 individuals ha-1). Visible effects on megafaunal assemblages as a result of seabed drilling were limited in extent although assemblage responses were complex, being controlled by differing effects to individual species often based on their motility
    corecore