89 research outputs found

    Increasing Dietary Fat Elicits Similar Changes in Fat Oxidation and Markers of Muscle Oxidative Capacity in Lean and Obese Humans

    Get PDF
    In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN) and obese (OB) adults exposed to a 2-day high-fat (HF) diet. Ten LN (BMI = 22.5±2.5 kg/m2, age = 30±8 yrs) and nine OB (BMI = 35.9±4.93 kg/m2, 38±5 yrs, Mean±SD) were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy) and HF (50% of energy) diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ) did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01) during LF, and similarly decreased during HF in LN (0.86±0.01) and OB (0.85±0.01). The expression of pyruvate dehydrogenase kinase 4 (PDK4) and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α) significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK) significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity

    Non-typeable Haemophilus influenzae and Streptococcus pneumoniae as primary causes of acute otitis media in colombian children: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute otitis media (AOM) is one of the most frequently encountered bacterial infections in children aged < 5 years; <it>Streptococcus pneumoniae </it>(<it>S. pneumoniae</it>) and non-typeable <it>Haemophilus influenzae </it>(NTHi) are historically identified as primary AOM causes. Nevertheless, recent data on bacterial pathogens causing AOM in Latin America are limited. This prospective study aimed to identify and characterize bacterial etiology and serotypes of AOM cases including antimicrobial susceptibility in < 5 year old Colombian children.</p> <p>Methods</p> <p>From February 2008 to January 2009, children ≥3 months and < 5 years of age presenting with AOM and for whom a middle ear fluid (MEF) sample was available were enrolled in two medical centers in Cali, Colombia. MEF samples were collected either by tympanocentesis procedure or spontaneous otorrhea swab sampling. Bacteria were identified using standard laboratory methods, and antimicrobial resistance testing was performed based on the 2009 Clinical and Laboratory Standards Institute (CLSI) criteria. Most of the cases included in the study were sporadic in nature.</p> <p>Results</p> <p>Of the 106 enrolled children, 99 were included in the analysis. Bacteria were cultured from 62/99 (63%) of samples with <it>S. pneumoniae, H. influenzae, or S. pyogenes</it>. The most commonly isolated bacteria were <it>H. influenzae </it>in 31/99 (31%) and <it>S. pneumoniae </it>in 30/99 (30%) of samples. The majority of <it>H. influenzae </it>episodes were NTHi (27/31; 87%). 19F was the most frequently isolated pneumococcal serotype (10/30; 33%). Of the 30 <it>S. pneumoniae </it>positive samples, 8/30 (27%) were resistant to tetracycline, 5/30 (17%) to erythromycin and 8/30 (27%) had intermediate resistance to penicillin. All <it>H. influenzae </it>isolates tested were negative to beta-lactamase.</p> <p>Conclusions</p> <p>NTHi and <it>S. pneumoniae </it>are the leading causes of AOM in Colombian children. A pneumococcal conjugate vaccine that prevents both pathogens could be useful in maximizing protection against AOM.</p

    Increase in serotype 19A prevalence and amoxicillin non-susceptibility among paediatric Streptococcus pneumoniae isolates from middle ear fluid in a passive laboratory-based surveillance in Spain, 1997-2009

    Get PDF
    BACKGROUND: Conjugate vaccines, such as the 7-valent conjugate vaccine (PCV7), alter serotype nasopharyngeal carriage, potentially increasing cases of otitis media by non-vaccine serotypes. METHODS: All paediatric middle ear fluid (MEF) isolates received in the Spanish Reference Laboratory for Pneumococci through a passive, laboratory-based surveillance system from January 1997 to June 2009 were analysed. Data from 1997 to 2000 were pooled as pre-vaccination period. Trends over time were explored by linear regression analysis. RESULTS: A total of 2,077 isolates were analysed: 855 belonging to PCV7 serotypes, 466 to serotype 19A, 215 to serotype 3, 89 to serotype 6A and 452 to other serotypes ( 35% isolates) since PCV7 strains represented < 11% of total clinical isolates. CONCLUSIONS: In contrast to reports on invasive pneumococcal strains, in MEF isolates the reduction in the prevalence of PCV7 serotypes was not associated with decreases in penicillin/erythromycin non-susceptibility. The high prevalence of serotype 19A among paediatric MEF isolates and the amoxicillin non-susceptibility found in this serotype are worrisome since amoxicillin is the most common antibiotic used in the treatment of acute otitis media. These data suggest that non-PCV7 serotypes (mainly serotype 19A followed by serotypes 3 and 6A) are important etiological agents of acute otitis media and support the added value of the broader coverage of the new 13-valent conjugate vaccine.This study was supported in part by an unrestricted grant from Pfizer S.A., Madrid, Spain and PRISM-AG, Madrid, Spain. O.R. belongs to the Spanish Network for the Research in Infectious Diseases (REIPI).S

    Non-capsulated and capsulated Haemophilus influenzae in children with acute otitis media in Venezuela: a prospective epidemiological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-typeable <it>Haemophilus influenzae </it>(NTHi) and <it>Streptococcus pneumoniae </it>are major causes of bacterial acute otitis media (AOM). Data regarding AOM are limited in Latin America. This is the first active surveillance in a private setting in Venezuela to characterize the bacterial etiology of AOM in children < 5 years of age.</p> <p>Methods</p> <p>Between December 2008 and December 2009, 91 AOM episodes (including sporadic, recurrent and treatment failures) were studied in 87 children enrolled into a medical center in Caracas, Venezuela. Middle ear fluid samples were collected either by tympanocentesis or spontaneous otorrhea swab sampling method. Standard laboratory and microbiological techniques were used to identify bacteria and test for antimicrobial resistance. The results were interpreted according to Clinical Laboratory Standards Institute (CLSI) 2009 for non-meningitis isolates. All statistical analyses were performed using SAS 9.1 and Microsoft Excel (for graphical purposes).</p> <p>Results</p> <p>Overall, bacteria were cultured from 69.2% (63 of the 91 episodes); at least one pathogen (<it>S. pneumoniae, H. influenzae, S. pyogenes </it>or <it>M. catarrhalis</it>) was cultured from 65.9% (60/91) of episodes. <it>H. influenzae </it>(55.5%; 35/63 episodes) and <it>S. pneumoniae </it>(34.9%; 22/63 episodes) were the most frequently reported bacteria. Among <it>H. influenzae </it>isolates, 62.9% (22/35 episodes) were non-capsulated (NTHi) and 31.4% (11/35 episodes) were capsulated including types d, a, c and f, across all age groups. Low antibiotic resistance for <it>H. influenzae </it>was observed to amoxicillin/ampicillin (5.7%; 2/35 samples). NTHi was isolated in four of the six <it>H. influenzae </it>positive samples (66.7%) from recurrent episodes.</p> <p>Conclusions</p> <p>We found <it>H. influenzae </it>and <it>S. pneumoniae </it>to be the main pathogens causing AOM in Venezuela. Pneumococcal conjugate vaccines with efficacy against these bacterial pathogens may have the potential to maximize protection against AOM.</p

    Study protocol for the translating research in elder care (TREC): building context – an organizational monitoring program in long-term care project (project one)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While there is a growing awareness of the importance of organizational context (or the work environment/setting) to successful knowledge translation, and successful knowledge translation to better patient, provider (staff), and system outcomes, little empirical evidence supports these assumptions. Further, little is known about the factors that enhance knowledge translation and better outcomes in residential long-term care facilities, where care has been shown to be suboptimal. The project described in this protocol is one of the two main projects of the larger five-year Translating Research in Elder Care (TREC) program.</p> <p>Aims</p> <p>The purpose of this project is to establish the magnitude of the effect of organizational context on knowledge translation, and subsequently on resident, staff (unregulated, regulated, and managerial) and system outcomes in long-term care facilities in the three Canadian Prairie Provinces (Alberta, Saskatchewan, Manitoba).</p> <p>Methods/Design</p> <p>This study protocol describes the details of a multi-level – including provinces, regions, facilities, units within facilities, and individuals who receive care (residents) or work (staff) in facilities – and longitudinal (five-year) research project. A stratified random sample of 36 residential long-term care facilities (30 urban and 6 rural) from the Canadian Prairie Provinces will comprise the sample. Caregivers and care managers within these facilities will be asked to complete the TREC survey – a suite of survey instruments designed to assess organizational context and related factors hypothesized to be important to successful knowledge translation and to achieving better resident, staff, and system outcomes. Facility and unit level data will be collected using standardized data collection forms, and resident outcomes using the Resident Assessment Instrument-Minimum Data Set version 2.0 instrument. A variety of analytic techniques will be employed including descriptive analyses, psychometric analyses, multi-level modeling, and mixed-method analyses.</p> <p>Discussion</p> <p>Three key challenging areas associated with conducting this project are discussed: sampling, participant recruitment, and sample retention; survey administration (with unregulated caregivers); and the provision of a stable set of study definitions to guide the project.</p

    Streptococcus pneumoniae Clonal Complex 199: Genetic Diversity and Tissue-Specific Virulence

    Get PDF
    Streptococcus pneumoniae is an important cause of otitis media and invasive disease. Since introduction of the heptavalent pneumococcal conjugate vaccine, there has been an increase in replacement disease due to serotype 19A clonal complex (CC)199 isolates. The goals of this study were to 1) describe genetic diversity among nineteen CC199 isolates from carriage, middle ear, blood, and cerebrospinal fluid, 2) compare CC199 19A (n = 3) and 15B/C (n = 2) isolates in the chinchilla model for pneumococcal disease, and 3) identify accessory genes associated with tissue-specific disease among a larger collection of S. pneumoniae isolates. CC199 isolates were analyzed by comparative genome hybridization. One hundred and twenty-seven genes were variably present. The CC199 phylogeny split into two main clades, one comprised predominantly of carriage isolates and another of disease isolates. Ability to colonize and cause disease did not differ by serotype in the chinchilla model. However, isolates from the disease clade were associated with faster time to bacteremia compared to carriage clade isolates. One 19A isolate exhibited hypervirulence. Twelve tissue-specific genes/regions were identified by correspondence analysis. After screening a diverse collection of 326 isolates, spr0282 was associated with carriage. Four genes/regions, SP0163, SP0463, SPN05002 and RD8a were associated with middle ear isolates. SPN05002 also associated with blood and CSF, while RD8a associated with blood isolates. The hypervirulent isolate's genome was sequenced using the Solexa paired-end sequencing platform and compared to that of a reference serotype 19A isolate, revealing the presence of a novel 20 kb region with sequence similarity to bacteriophage genes. Genetic factors other than serotype may modulate virulence potential in CC199. These studies have implications for the long-term effectiveness of conjugate vaccines. Ideally, future vaccines would target common proteins to effectively reduce carriage and disease in the vaccinated population

    Basement membrane components are key players in specialized extracellular matrices

    Get PDF
    More than three decades ago, basement membranes (BMs) were described as membrane-like structures capable of isolating a cell from and connecting a cell to its environment. Since this time, it has been revealed that BMs are specialized extracellular matrices (sECMs) with unique components that support important functions including differentiation, proliferation, migration, and chemotaxis of cells during development. The composition of these sECM is as unique as the tissues to which they are localized, opening the possibility that such matrices can fulfill distinct functions. Changes in BM composition play significant roles in facilitating the development of various diseases. Furthermore, tissues have to provide sECM for their stem cells during development and for their adult life. Here, we briefly review the latest research on these unique sECM and their components with a special emphasis on embryonic and adult stem cells and their niches
    corecore