2,166 research outputs found

    “Ma is in the park”: memory, identity, and the Bethune Memorial

    Get PDF
    The Bethune Memorial, in Washington D.C.’s Lincoln Park, was erected to celebrate the life and achievements of civil rights leader and educator Mary McLeod Bethune. When it was dedicated in 1974 it became the first monument to an African American, and the first to a woman, on federal land in the capital. This article interprets the monument and its accompanying discourses. It examines how race and gender are constructed in the memorial, and what this suggests about the creation of a collective memory and identity. Bethune was remembered as an American, a black American, and a black American woman. The article explores the racial and gendered tensions in the commemoration, and how the statue both reinforced and challenged a national American memory

    GULP: Capabilities and prospects

    Get PDF
    The current status and capabilities of the atomistic simulation code GULP are described. In particular, the differences between versions 1.3.2 and 3.0 are detailed, as well as a concise pointer to applications in computational crystallography

    Globular Cluster Scale Sizes in Giant Galaxies: Orbital Anisotropy and Tidally Under-filling Clusters in M87, NGC 1399, and NGC 5128

    Get PDF
    We investigate the shallow increase in globular cluster half-light radii with projected galactocentric distance RgcR_{gc} observed in the giant galaxies M87, NGC 1399, and NGC 5128. To model the trend in each galaxy, we explore the effects of orbital anisotropy and tidally under-filling clusters. While a strong degeneracy exists between the two parameters, we use kinematic studies to help constrain the distance RβR_\beta beyond which cluster orbits become anisotropic, as well as the distance RfαR_{f\alpha} beyond which clusters are tidally under-filling. For M87 we find Rβ>27R_\beta > 27 kpc and 20<Rfα1320 < R_{f\alpha} 13 kpc and 10<Rfα<3010 < R_{f\alpha} < 30 kpc. The connection of RfαR_{f\alpha} with each galaxy's mass profile indicates the relationship between size and RgcR_{gc} may be imposed at formation, with only inner clusters being tidally affected. The best fitted models suggest the dynamical histories of brightest cluster galaxies yield similar present-day distributions of cluster properties. For NGC 5128, the central giant in a small galaxy group, we find Rβ>5R_\beta > 5 kpc and Rfα>30R_{f\alpha} > 30 kpc. While we cannot rule out a dependence on RgcR_{gc}, NGC 5128 is well fitted by a tidally filling cluster population with an isotropic distribution of orbits, suggesting it may have formed via an initial fast accretion phase. Perturbations from the surrounding environment may also affect a galaxy's orbital anisotropy profile, as outer clusters in M87 and NGC 1399 have primarily radial orbits while outer NGC 5128 clusters remain isotropic.Comment: 16 pages, 7 figures, 4 tables, Accepted for publication in MNRA

    Deep HST Imaging in NGC 6397: Stellar Dynamics

    Full text link
    Multi-epoch observations with ACS on HST provide a unique and comprehensive probe of stellar dynamics within NGC 6397. We are able to confront analytic models of the globular cluster with the observed stellar proper motions. The measured proper motions probe well along the main sequence from 0.8 to below 0.1 M_\odot as well as white dwarfs younger than one gigayear. The observed field lies just beyond the half-light radius where standard models of globular cluster dynamics (e.g. based on a lowered Maxwellian phase-space distribution) make very robust predictions for the stellar proper motions as a function of mass. The observed proper motions show no evidence for anisotropy in the velocity distribution; furthermore, the observations agree in detail with a straightforward model of the stellar distribution function. We do not find any evidence that the young white dwarfs have received a natal kick in contradiction with earlier results. Using the observed proper motions of the main-sequence stars, we obtain a kinematic estimate of the distance to NGC 6397 of 2.20.7+0.52.2^{+0.5}_{-0.7} kpc and a mass of the cluster of 1.1±0.1×105M1.1 \pm 0.1 \times 10^5 \mathrm{M}_\odot at the photometric distance of 2.53 kpc. One of the main-sequence stars appears to travel on a trajectory that will escape the cluster, yielding an estimate of the evaporation timescale, over which the number of stars in the cluster decreases by a factor of e, of about 3 Gyr. The proper motions of the youngest white dwarfs appear to resemble those of the most massive main-sequence stars, providing the first direct constraint on the relaxation time of the stars in a globular cluster of greater than or about 0.7 Gyr.Comment: 25 pages, 20 figures, accepted for publication in Astrophysical Journa

    Quantum computing and materials science: A practical guide to applying quantum annealing to the configurational analysis of materials

    Get PDF
    Using quantum computers for computational chemistry and materials science will enable us to tackle problems that are intractable on classical computers. In this paper, we show how the relative energy of defective graphene structures can be calculated by using a quantum annealer. This simple system is used to guide the reader through the steps needed to translate a chemical structure (a set of atoms) and energy model to a representation that can be implemented on quantum annealers (a set of qubits). We discuss in detail how different energy contributions can be included in the model and what their effect is on the final result. The code used to run the simulation on D-Wave quantum annealers is made available as a Jupyter Notebook. This Tutorial was designed to be a quick-start guide for the computational chemists interested in running their first quantum annealing simulations. The methodology outlined in this paper represents the foundation for simulating more complex systems, such as solid solutions and disordered systems

    Anatomy of the long head of biceps femoris: An ultrasound study

    Get PDF
    Hamstring strains, particularly involving the long head of biceps femoris (BFlh) at the proximal musculotendinous junction (MTJ), are commonly experienced by athletes. With the use of diagnostic ultrasound increasing, an in-depth knowledge of normal ultrasonographic anatomy is fundamental to better understanding hamstring strain. The aim of this study was to describe the architecture of BFlh, using ultrasonography, in young men and cadaver specimens. BFlh morphology was examined in 19 healthy male participants (mean age 21.6 years) using ultrasound. Muscle, tendon and MTJ lengths were recorded and architectural parameters assessed at four standardised points along the muscle. Measurement accuracy was validated by ultrasound and dissection of BFlh in six male cadaver lower limbs (mean age 76 years). Intra-rater reliability of architectural parameters was examined for repeat scans, image analysis and dissection measurements. Distally the BFlh muscle had significantly (P

    An Empirical Measure of the Rate of White Dwarf Cooling in 47 Tucanae

    Full text link
    We present an empirical determination of the white dwarf cooling sequence in the globular cluster 47 Tucanae. Using spectral models, we determine temperatures for 887 objects from Wide Field Camera 3 data, as well as 292 objects from data taken with the Advanced Camera for Surveys. We make the assumption that the rate of white dwarf formation in the cluster is constant. Stellar evolution models are then used to determine the rate at which objects are leaving the main sequence, which must be the same as the rate at which objects are arriving on the white dwarf sequence in our field. The result is an empirically derived relation between temperature (TeffT_{eff}) and time (tt) on the white dwarf cooling sequence. Comparing this result to theoretical cooling models, we find general agreement with the expected slopes between 20,000K and 30,000K and between 6,000K and 20,000K, but the transition to the Mestel cooling rate of Tefft0.4T_{eff} \propto t^{-0.4} is found to occur at hotter temperatures, and more abruptly than is predicted by any of these models.Comment: 10 pages, 16 figures, accepted for publication in Ap

    Hindcasting of hurricane characteristics and observed storm damage on a fringing reef, Jamaica, West Indies

    Get PDF
    Hurricane Allen is one of the most severe hurricanes on record and caused extensive damage throughout the Caribbean in early August 1980. Coral reefs along the north coast of Jamaica were devastated by the hurricane-induced waves. As in the case of most hurricanes, no wave measurements were made. We have computed the wind field and hindcast the deep water wave characteristics as the storm impacted the fringing reef at Discovery Bay on the north central coast of Jamaica. The deep water waves propagated into shallow water on the forereef and transformed as a result of shoaling and refraction. We found that significant wave height at a given time varied by a factor of 2.6 and that incident wave power for the duration of the storm varied by a factor of 7 along a 3 km section of the Discovery Bay forereef due to variations in local bathymetry. Maximum hindcast breakers reached a height of 11.5 m with a significant wave period of 10.5 s. Observations of the most intense reef damage coincided with areas on the eastern forereef experiencing the highest breakers. We speculate that the degree of reef damage is a function of how much time has elapsed since the previous storm rather than frequency of hurricanes at a locality
    corecore