39,612 research outputs found

    The system parameters of the polars MR Ser and ST LMi

    Full text link
    We obtain the NaI 8183,8195 absorption line radial velocity curves for the polars ST LMi and MR Ser, from which we find the semi-amplitudes to be K_abs=329=+/-6 kms-1 and K_abs=289+/-9 kms-1 respectively. We find that for both systems the effects on the \NaI absorption lines due to X-rays heating the inner face of the secondary are negligible, and so the values obtained for K_abs can be taken as the true semi-amplitude of the secondary star. We then determine the projected rotational velocities, vsini, to be 104+/-9 kms-1 and 66+/-13 kms-1 for ST LMi and MR Ser respectively which enables their mass ratios to be calculated. For ST LMi and MR Ser we find the mass ratio to be 0.22+/-0.04 and 0.10+/-0.05 respectively; values which are significantly different only at the 94 percent level. We show that ``spike'' in the orbital period distribution of polars is a significant feature, although the discovery of only one more system with a period outside the ``spike'' would decrease its significance below a 99 percent confidence level. We conclude that, even if the limb darkening coefficients for the secondary stars in ST LMi and MR Ser are the same, we cannot rule out the two systems having identical parameters. Therefore our observations are compatible with the theory explaining the ``spike'' in the period distribution of the AM Hers.Comment: 6 pages, accepted for MNRAS, use mn.sty, 9 postscript figures, 3 table

    A novel method for subjective picture quality assessment and further studies of HDTV formats

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ IEEE 2008.This paper proposes a novel method for the assessment of picture quality, called triple stimulus continuous evaluation scale (TSCES), to allow the direct comparison of different HDTV formats. The method uses an upper picture quality anchor and a lower picture quality anchor with defined impairments. The HDTV format under test is evaluated in a subjective comparison with the upper and lower anchors. The method utilizes three displays in a particular vertical arrangement. In an initial series of tests with the novel method, the HDTV formats 1080p/50,1080i/25, and 720p/50 were compared at various bit-rates and with seven different content types on three identical 1920 times 1080 pixel displays. It was found that the new method provided stable and consistent results. The method was tested with 1080p/50,1080i/25, and 720p/50 HDTV images that had been coded with H.264/AVC High profile. The result of the assessment was that the progressive HDTV formats found higher appreciation by the assessors than the interlaced HDTV format. A system chain proposal is given for future media production and delivery to take advantage of this outcome. Recommendations for future research conclude the paper

    Studies on the bit rate requirements for a HDTV format with 1920 timestimes 1080 pixel resolution, progressive scanning at 50 Hz frame rate targeting large flat panel displays

    Get PDF
    This paper considers the potential for an HDTV delivery format with 1920 times 1080 pixels progressive scanning and 50 frames per second in broadcast applications. The paper discusses the difficulties in characterizing the display to be assumed for reception. It elaborates on the required bit rate of the 1080p/50 format when critical content is coded in MPEG-4 H.264 AVC Part 10 and subjectively viewed on a large, flat panel display with 1920 times 1080 pixel resolution. The paper describes the initial subjective quality evaluations that have been made in these conditions. The results of these initial tests suggest that the required bit-rate for a 1080p/50 HDTV signal in emission could be kept equal or lower than that of 2nd generation HDTV formats, to achieve equal or better image qualit

    Resonant Scattering of Emission Lines in Coronal Loops: Effects on Image Morphology and Line Ratios

    Get PDF
    We have investigated the effects of resonant scattering of emission lines on the image morphology and intensity from coronal loop structures. It has previously been shown that line of sight effects in optically thin line emission can yield loop images that appear uniformly bright at one viewing angle, but show ``looptop sources'' at other viewing angles. For optically thick loops where multiple resonant scattering is important, we use a 3D Monte Carlo radiation transfer code. Our simulations show that the intensity variation across the image is more uniform than the optically thin simulation and, depending on viewing angle, the intensity may be lower or higher than that predicted from optically thin simulations due to scattering out of or into the line of sight.Comment: Accepted for publication in Ap

    Rapidly Converging Activity Expansions For Representing The Thermodynamic Properties Of Fluid Systems: Gases, Non-Electrolyte Solutions, Weak And Strong Electrolyte Solutions

    Get PDF
    For dilute gases and non-electrolyte solutions in the McMillan–Mayer standard state, an activity expansion due to Mayer has great advantages over the normal concentration expansion (virial equation) for strongly associating species. For weakly interacting systems, both approaches are suitable. The activity expansion eliminates the need to differentiate between strong “chemical” interactions and weak “physical” interactions since the same equation is used in each situation. The equation has been modified to represent electrolyte solutions in the McMillan–Mayer standard state by requiring that it be consistent with the Debye–HĂŒckel and higher order limiting laws for strong electrolytes and that it be equivalent to a chemical association model for weak electrolytes. The result is a compact equation which contains no arbitrary ion-size parameters and which does not require the classification of an electrolyte as strong or weak. For 2:2 electrolytes, the equation gives a very good fit to the anomalous low concentration region. For practical thermodynamic calculations, similar equations for molal activity coefficients are proposed; good fits of the data are obtained

    Optical and ROSAT X-ray observations of the dwarf nova OY Carinae in superoutburst and quiescence

    Full text link
    We present ROSAT X-ray and optical light curves of the 1994 February superoutburst of the eclipsing SU UMa dwarf nova OY Carinae. There is no eclipse of the flux in the ROSAT HRI light curve. Contemporaneous `wide B' band optical light curves show extensive superhump activity and dips at superhump maximum. Eclipse mapping of these optical light curves reveals a disc with a considerable physical flare, even three days into the superoutburst decline. We include a later (1994 July) ROSAT PSPC observation of OY Car that allows us to put constraints on the quiescent X-ray spectrum. We find that while there is little to choose between OY Car and its fellow high inclination systems with regard to the temperature of the emitting gas and the emission measure, we have difficulties reconciling the column density found from our X-ray observation with the column found in HST UV observations by Horne et al. (1994). The obvious option is to invoke time variability.Comment: 16 pages, 14 figures, accepted for publication in MNRA

    On the equation of state of a dense columnar liquid crystal

    Full text link
    An accurate description of a columnar liquid crystal of hard disks at high packing fractions is presented using an improved free-volume theory. It is shown that the orientational entropy of the disks in the one-dimensional fluid direction leads to a different high-density scaling pressure compared to the prediction from traditional cell theory. Excellent quantitative agreement is found with recent Monte-Carlo simulation results for various thermodynamic and structural properties of the columnar state.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Material flow during the extrusion of simple and complex cross-sections using FEM

    Get PDF
    This paper deals with the extrusion of rod and shape sections and uses a 3D finite element model analysis (FEM) to predict the effect of die geometry on maximum extrusion load. A description of material flow in the container is considered in more detail for rod and shape sections in order to fully comprehend the transient conditions occurring during the process cycle. A comparison with experiments is made to assess the relative importance of some extrusion parameters in the extrusion process and to ensure that the numerical discretisation yields a realistic simulation of the process. The usefulness and the limitation of FEM are discussed when modelling complex shapes. Results are presented for velocity contours and shear stress distribution during the extrusion process. It is shown that for most of the shapes investigated, the material making up the extrudate cross-sections originates from differing regions of virgin material within the billet. The outside surface of the extrudate originates from the material moving along the dead metal zone (DMZ) and the core of the extrudate from the central deformation zone. The FE program appears to predict all the major characteristics of the flow observed macroscopically
    • 

    corecore