12 research outputs found
Evaluation of envelope domain III-based single chimeric tetravalent antigen and monovalent antigen mixtures for the detection of anti-dengue antibodies in human sera
<p>Abstract</p> <p>Background</p> <p>Flavivirus cross-reactive antibodies in human sera interfere with the definitive identification of dengue virus (DENV) infections especially in areas with multiple co-circulating flaviviruses. Use of DENV envelope domain-III (EDIII) can partially resolve the problem. This study has examined the effect of (i) incorporating the EDIIIs of four DENV serotypes into a single chimeric antigen, and (ii) immobilizing the antigen through specific interaction on the sensitivity and specificity of anti-DENV antibody detection.</p> <p>Methods</p> <p>A sera panel (n = 164) was assembled and characterized using commercial kits for infection by DENV and a host of other pathogens. Anti-DENV antibodies of both IgM and IgG classes in this panel were detected in indirect ELISAs using a mixture of monovalent EDIIIs, a chimeric EDIII-based tetravalent antigen, EDIII-T, and a biotinylated version of the latter as coating antigens. The sensitivity and specificity of these assays were compared to those obtained using the PanBio Dengue IgG/IgM ELISAs.</p> <p>Results</p> <p>The performance of dengue IgG and IgM indirect ELISAs, using either a physical mixture of four EDIIIs or the single chimeric EDIII-T antigen, were comparable. Coating of a biotinylated version of the tetravalent antigen on streptavidin plates enhanced sensitivity without compromising specificity.</p> <p>Conclusions</p> <p>The incorporation of the EDIIIs of the four DENV serotypes into a single chimeric antigen did not adversely affect assay outcome in indirect ELISAs. Oriented, rather than random, immobilization of the tetravalent antigen enhanced sensitivity of detection of anti-DENV antibodies with retention of 100% specificity.</p
Prevalence and incidence of dengue virus and antibody placental transfer during late pregnancy in central Brazil
Evaluation of the safety and adjuvant effect of a detoxified listeriolysin O mutant on the humoral response to dengue virus antigens
The mechanistic role of antibodies to dengue virus in protection and disease pathogenesis
Drivers of Inter-individual Variation in Dengue Viral Load Dynamics
Dengue is a vector-borne viral disease of humans that endemically circulates in many tropical and subtropical regions worldwide. Infection with dengue can result in a range of disease outcomes. A considerable amount of research has sought to improve our understanding of this variation in disease outcomes and to identify predictors of severe disease. Contributing to this research, patterns of viral load in dengue infected patients have been quantified, with analyses indicating that peak viral load levels, rates of viral load decline, and time to peak viremia are useful predictors of severe disease. Here, we take a complementary approach to understanding patterns of clinical manifestation and inter-individual variation in viral load dynamics. Specifically, we statistically fit mathematical within-host models of dengue to individual-level viral load data to test virological and immunological hypotheses explaining inter-individual variation in dengue viral load. We choose between alternative models using model selection criteria to determine which hypotheses are best supported by the data. We first show that the cellular immune response plays an important role in regulating viral load in secondary dengue infections. We then provide statistical support for the process of antibody-dependent enhancement (but not original antigenic sin) in the development of severe disease in secondary dengue infections. Finally, we show statistical support for serotype-specific differences in viral infectivity rates, with infectivity rates of dengue serotypes 2 and 3 exceeding those of serotype 1. These results contribute to our understanding of dengue viral load patterns and their relationship to the development of severe dengue disease. They further have implications for understanding how dengue transmissibility may depend on the immune status of infected individuals and the identity of the infecting serotype
