13 research outputs found

    Huntingtin gene repeat size variations affect risk of lifetime depression

    Get PDF
    Huntington disease (HD) is a severe neuropsychiatric disorder caused by a cytosine-adenine-guanine (CAG) repeat expansion in the HTT gene. Although HD is frequently complicated by depression, it is still unknown to what extent common HTT CAG repeat size variations in the normal range could affect depression risk in the general population. Using binary logistic regression, we assessed the association between HTT CAG repeat size and depression risk in two well-characterized Dutch cohorts─the Netherlands Study of Depression and Anxiety and the Netherlands Study of Depression in Older Persons─including 2165 depressed and 1058 non-depressed persons. In both cohorts, separately as well as combined, there was a significant non-linear association between the risk of lifetime depression and HTT CAG repeat size in which both relatively short and relatively large alleles were associated with an increased risk of depression (β = −0.292 and β = 0.006 for the linear and the quadratic term, respectively; both P < 0.01 after adjustment for the effects of sex, age, and education level). The odds of lifetime depression were lowest in persons with a HTT CAG repeat size of 21 (odds ratio: 0.71, 95% confidence interval: 0.52 to 0.98) compared to the average odds in the total cohort. In conclusion, lifetime depression risk was higher with both relatively short and relatively large HTT CAG repeat sizes in the normal range. Our study provides important proof-of-principle that repeat polymorphisms can act as hitherto unappreciated but complex genetic modifiers of depression

    Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide

    Get PDF
    To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2′-O-methyl phosphorothioate (CUG)n triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)7, also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well

    Underlying molecular mechanisms of DIO2 susceptibility in symptomatic osteoarthritis

    No full text
    Objectives To investigate how the genetic susceptibility gene DIO2 confers risk to osteoarthritis (OA) onset in humans and to explore whether counteracting the deleterious effect could contribute to novel therapeutic approaches. Methods Epigenetically regulated expression of DIO2 was explored by assessing methylation of positional CpG-dinucleotides and the respective DIO2 expression in OA-affected and macroscopically preserved articular cartilage from end-stage OA patients. In a human in vitro chondrogenesis model, we measured the effects when thyroid signalling during culturing was either enhanced (excess T3 or lentiviral induced DIO2 overexpression) or decreased (iopanoic acid). Results OA-related changes in methylation at a specific CpG dinucleotide upstream of DIO2 caused significant upregulation of its expression (beta=4.96; p=0.0016). This effect was enhanced and appeared driven specifically by DIO2 rs225014 risk allele carriers (beta=5.58, p=0.0006). During in vitro chondrogenesis, DIO2 overexpression resulted in a significant reduced capacity of chondrocytes to deposit extracellular matrix (ECM) components, concurrent with significant induction of ECM degrading enzymes (ADAMTS5, MMP13) and markers of mineralisation (ALPL, COL1A1). Given their concurrent and significant upregulation of expression, this process is likely mediated via HIF-2 alpha/RUNX2 signalling. In contrast, we showed that inhibiting deiodinases during in vitro chondrogenesis contributed to prolonged cartilage homeostasis as reflected by significant increased deposition of ECM components and attenuated upregulation of matrix degrading enzymes. Conclusions Our findings show how genetic variation at DIO2 could confer risk to OA and raised the possibility that counteracting thyroid signalling may be a novel therapeutic approach

    Cellular Inclusion Bodies of Mutant Huntingtin Exon 1 Obscure Small Fibrillar Aggregate Species

    Get PDF
    The identities of toxic aggregate species in Huntington's disease pathogenesis remain ambiguous. While polyQ-expanded huntingtin (Htt) is known to accumulate in compact inclusion bodies inside neurons, this is widely thought to be a protective coping response that sequesters misfolded conformations or aggregated states of the mutated protein. To define the spatial distributions of fluorescently-labeled Htt-exon1 species in the cell model PC12m, we employed highly sensitive single-molecule super-resolution fluorescence imaging. In addition to inclusion bodies and the diffuse pool of monomers and oligomers, fibrillar aggregates ~100 nm in diameter and up to ~1–2 µm in length were observed for pathogenic polyQ tracts (46 and 97 repeats) after targeted photo-bleaching of the inclusion bodies. These short structures bear a striking resemblance to fibers described in vitro. Definition of the diverse Htt structures in cells will provide an avenue to link the impact of therapeutic agents to aggregate populations and morphologies

    Gene editing and RNAi approaches for COVID-19 diagnostics and therapeutics

    No full text
    The novel coronavirus pneumonia (COVID-19) is a highly infectious acute respiratory disease caused by Severe Acute Respiratory Syndrome-Related Coronavirus (SARS-CoV-2) (Prec Clin Med 2020;3:9–13, Lancet 2020;395:497–506, N. Engl J Med 2020a;382:1199–207, Nature 2020;579:270–3). SARS-CoV-2 surveillance is essential to controlling widespread transmission. However, there are several challenges associated with the diagnostic of the COVID-19 during the current outbreak (Liu and Li (2019), Nature 2020;579:265–9, N. Engl J Med 2020;382:727–33). Firstly, the high number of cases overwhelms diagnostic test capacity and proposes the need for a rapid solution for sample processing (Science 2018;360:444–8). Secondly, SARS-CoV-2 is closely related to other important coronavirus species and subspecies, so detection assays can give false-positive results if they are not efficiently specific to SARS-CoV-2. Thirdly, patients with suspected SARS-CoV-2 infection sometimes have a different respiratory viral infection or co-infections with SARS-CoV-2 and other respiratory viruses (MedRxiv 2020a;1–18). Confirmation of the COVID-19 is performed mainly by virus isolation followed by RT-PCR and sequencing (N. Engl J Med 2020;382:727–33, MedRxiv 2020a, Turkish J Biol 2020;44:192–202). The emergence and outbreak of the novel coronavirus highlighted the urgent need for new therapeutic technologies that are fast, precise, stable, easy to manufacture, and target-specific for surveillance and treatment. Molecular biology tools that include gene-editing approaches such as CRISPR-Cas12/13-based SHERLOCK, DETECTR, CARVER and PAC-MAN, antisense oligonucleotides, antisense peptide nucleic acids, ribozymes, aptamers, and RNAi silencing approaches produced with cutting-edge scientific advances compared to conventional diagnostic or treatment methods could be vital in COVID-19 and other future outbreaks. Thus, in this review, we will discuss potent the molecular biology approaches that can revolutionize diagnostic of viral infections and therapies to fight COVID-19 in a highly specific, stable, and efficient way

    Choosing an animal model for the study of Huntington's disease

    No full text

    Normal and mutant HTT interact to affect clinical severity and progression in Huntington disease.

    No full text
    corecore