18 research outputs found

    PolyQ Repeat Expansions in ATXN2 Associated with ALS Are CAA Interrupted Repeats

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27–33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1–3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2

    Dysferlin Exon 32 Skipping in Patient Cells

    No full text
    International audienceDysferlinopathies are rare genetic diseases affecting muscles due to mutations in DYSF. Exon 32 of DYSF has been shown to be dispensable for dysferlin functions. Here we present a method to visualize the skipping of exon 32 at the RNA and protein levels using an antisense oligonucleotide on cells derived from a dysferlinopathy-affected patient

    TBP as a candidate gene for mental retardation in patients with subtelomeric 6q deletions

    No full text
    International audienceMonozygotic twin brothers with a subtelomeric 6q deletion presented with mental retardation, microcephaly, seizures, an enlarged cisterna magna, dimpling at elbows, a high arched palate and a thin upper lip. The same subtelomeric deletion was detected in the mother of the patients, presenting with a milder phenotype. We narrowed down the breakpoint to a region of approximately 100 kb and estimated the size of the terminal deletion to be 1.2 Mb. This region contains four known and seven putative genes. Comparison of the deletion with other reported patients showed TBP was the most plausible candidate gene for the mental retardation in this syndrome. We verified that the TBP gene expression was halved in our patients using real-time PCR. Cognitive and behavioural tests performed on previously described heterozygous tbp mice suggested that TBP is potentially involved in cognitive development
    corecore