45 research outputs found

    The potential of hematopoietic growth factors for treatment of Alzheimer's disease: a mini-review

    Get PDF
    There are no effective interventions that significantly forestall or reverse neurodegeneration and cognitive decline in Alzheimer's disease. In the past decade, the generation of new neurons has been recognized to continue throughout adult life in the brain's neurogenic zones. A major challenge has been to find ways to harness the potential of the brain's own neural stem cells to repair or replace injured and dying neurons. The administration of hematopoietic growth factors or cytokines has been shown to promote brain repair by a number of mechanisms, including increased neurogenesis, anti-apoptosis and increased mobilization of bone marrow-derived microglia into brain. In this light, cytokine treatments may provide a new therapeutic approach for many brain disorders, including neurodegenerative diseases like Alzheimer's disease. In addition, neuronal hematopoietic growth factor receptors provide novel targets for the discovery of peptide-mimetic drugs that can forestall or reverse the pathological progression of Alzheimer's disease

    Topology of molecular machines of the endoplasmic reticulum: a compilation of proteomics and cytological data

    Get PDF
    The endoplasmic reticulum (ER) is a key organelle of the secretion pathway involved in the synthesis of both proteins and lipids destined for multiple sites within and without the cell. The ER functions to both co- and post-translationally modify newly synthesized proteins and lipids and sort them for housekeeping within the ER and for transport to their sites of function away from the ER. In addition, the ER is involved in the metabolism and degradation of specific xenobiotics and endogenous biosynthetic products. A variety of proteomics studies have been reported on different subcompartments of the ER providing an ER protein dictionary with new data being made available on many protein complexes of relevance to the biology of the ER including the ribosome, the translocon, coatomer proteins, cytoskeletal proteins, folding proteins, the antigen-processing machinery, signaling proteins and proteins involved in membrane traffic. This review examines proteomics and cytological data in support of the presence of specific molecular machines at specific sites or subcompartments of the ER

    Prevention of acute kidney injury and protection of renal function in the intensive care unit

    Get PDF
    Acute renal failure on the intensive care unit is associated with significant mortality and morbidity. To determine recommendations for the prevention of acute kidney injury (AKI), focusing on the role of potential preventative maneuvers including volume expansion, diuretics, use of inotropes, vasopressors/vasodilators, hormonal interventions, nutrition, and extracorporeal techniques. A systematic search of the literature was performed for studies using these potential protective agents in adult patients at risk for acute renal failure/kidney injury between 1966 and 2009. The following clinical conditions were considered: major surgery, critical illness, sepsis, shock, and use of potentially nephrotoxic drugs and radiocontrast media. Where possible the following endpoints were extracted: creatinine clearance, glomerular filtration rate, increase in serum creatinine, urine output, and markers of tubular injury. Clinical endpoints included the need for renal replacement therapy, length of stay, and mortality. Studies are graded according to the international Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) group system Several measures are recommended, though none carries grade 1A. We recommend prompt resuscitation of the circulation with special attention to providing adequate hydration whilst avoiding high-molecular-weight hydroxy-ethyl starch (HES) preparations, maintaining adequate blood pressure using vasopressors in vasodilatory shock. We suggest using vasopressors in vasodilatory hypotension, specific vasodilators under strict hemodynamic control, sodium bicarbonate for emergency procedures administering contrast media, and periprocedural hemofiltration in severe chronic renal insufficiency undergoing coronary intervention

    Study on the species-specificity of Isospora michaelbakeri by experimental infection

    No full text
    Isospora michaelbakeri is one of the Isospora species most commonly found in the wild field, which can cause severe infection and mortality in young sparrows. In this study, we selected I. michaelbakeri (Chung Hsing strain) as a pathogen to orally inoculate russet sparrows (Passer rutilans), spotted munia (Lonchura punctulata), canary (Serinus canaria), Java sparrows (Padda oryzivora), chicken (Gallus domesticus), ducks (Anas platyrhynchos) and BALB/c mice. The results indicated that I. michaelbakeri infected only russet sparrows. Infected sparrows displayed lethargy, muscular weakness and fluffy feathers, followed by rapid death. Liver and spleen enlargement was seen in the infected birds. Schizonts were identified in thin smears from the venous blood, enlarged livers and spleens. Histopathological examination revealed schizonts and merozoites from the liver and spleen of infected russet sparrows, but not from other species experimentally inoculated with I. michaelbakeri in the present study. © 2007 Akadémiai Kiadó, Budapest.link_to_subscribed_fulltex
    corecore