43 research outputs found
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
Disrupting astrocyte-neuron lactate transfer persistently reduces conditioned responses to cocaine.
A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte-neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine
Neural responses to cues paired with methamphetamine in healthy volunteers
Drug cues, or conditioned responses to stimuli paired with drugs, are widely believed to promote drug use. The acquisition of these conditioned responses has been well characterized in laboratory animals: neutral stimuli paired with drugs elicit conditioned responses resembling the motivational and incentive properties of the drug itself. However, few studies have examined acquisition of conditioning, or the nature of the conditioned response, in humans. In this study, we used fMRI to examine neural responses to stimuli that had been paired with methamphetamine or placebo in healthy young adults. Participants first underwent four conditioning sessions in which visual-auditory stimuli were paired with either methamphetamine (20 mg, oral) or placebo. Then on a drug-free test day, the stimuli were presented during an fMRI scan to assess neural responses to the stimuli. We hypothesized that the stimuli would elicit drug-like brain activity, especially in regions related to reward. Instead, we found that the methamphetamine-paired stimuli, compared to placebo-paired stimuli, produced greater activation in regions related to visual and auditory processing, consistent with the drugs unconditioned effects on sensory processing. This is the first study to demonstrate conditioned neural responses to drug-paired stimuli after just two pairings of methamphetamine in healthy adults. The study also illustrates that conditioned responses may develop to unexpected components of the drugs effects.Funding Agencies|NIMH [T32MH020065]; [DA037011]; [S10OD018448]</p
Differential control over cocaine-seeking behavior by nucleus accumbens core and shell.
Nucleus accumbens (NAc) dopamine is widely implicated in mediating the reinforcing effects of drugs of abuse. However, the precise function of the NAc itself in drug self-administration has been difficult to establish. Here we show a neural double-dissociation of the behavioral processes that underlie cocaine self-administration in rats. Whereas selective excitotoxic lesions of the NAc core had only a minor effect on the acquisition of responding for cocaine under a standard schedule of continuous reinforcement, these lesions profoundly impaired the acquisition of drug-seeking behavior that was maintained by drug-associated conditioned reinforcers and assessed using a second-order schedule of cocaine reinforcement. In contrast, selective excitotoxic lesions of the NAc shell did not impair drug self-administration or the acquisition of cocaine-seeking, but they did attenuate the psychostimulant effects of cocaine. These results further our understanding of how the NAc controls drug-seeking and drug-taking behavior