73 research outputs found

    Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential

    Get PDF
    Human IgG3 displays the strongest effector functions of all IgG subclasses but has a short half-life for unresolved reasons. Here we show that IgG3 binds to IgG-salvage receptor (FcRn), but that FcRn-mediated transport and rescue of IgG3 is inhibited in the presence of IgG1 due to intracellular competition between IgG1 and IgG3. We reveal that this occurs because of a single amino acid difference at position 435, where IgG3 has an arginine instead of the histidine found in all other IgG subclasses. While the presence of R435 in IgG increases binding to FcRn at neutral pH, it decreases binding at acidic pH, affecting the rescue efficiency—but only in the presence of H435–IgG. Importantly, we show that in humans the half-life of the H435-containing IgG3 allotype is comparable to IgG1. H435–IgG3 also gave enhanced protection against a pneumococcal challenge in mice, demonstrating H435–IgG3 to be a candidate for monoclonal antibody therapies

    Neonatal Fc Receptor: From Immunity to Therapeutics

    Get PDF
    The neonatal Fc receptor (FcRn), also known as the Brambell receptor and encoded by Fcgrt, is a MHC class I like molecule that functions to protect IgG and albumin from catabolism, mediates transport of IgG across epithelial cells, and is involved in antigen presentation by professional antigen presenting cells. Its function is evident in early life in the transport of IgG from mother to fetus and neonate for passive immunity and later in the development of adaptive immunity and other functions throughout life. The unique ability of this receptor to prolong the half-life of IgG and albumin has guided engineering of novel therapeutics. Here, we aim to summarize the basic understanding of FcRn biology, its functions in various organs, and the therapeutic design of antibody- and albumin-based therapeutics in light of their interactions with FcRn

    Characterization of the Rabbit Neonatal Fc Receptor (FcRn) and Analyzing the Immunophenotype of the Transgenic Rabbits That Overexpresses FcRn

    Get PDF
    The neonatal Fc receptor (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes an active role in phagocytosis, and delivers antigen for presentation. We have previously shown that overexpression of FcRn in transgenic mice significantly improves the humoral immune response. Because rabbits are an important source of polyclonal and monoclonal antibodies, adaptation of our FcRn overexpression technology in this species would bring significant advantages. We cloned the full length cDNA of the rabbit FcRn alpha-chain and found that it is similar to its orthologous analyzed so far. The rabbit FcRn - IgG contact residues are highly conserved, and based on this we predicted pH dependent interaction, which we confirmed by analyzing the pH dependent binding of FcRn to rabbit IgG using yolk sac lysates of rabbit fetuses by Western blot. Using immunohistochemistry, we detected strong FcRn staining in the endodermal cells of the rabbit yolk sac membrane, while the placental trophoblast cells and amnion showed no FcRn staining. Then, using BAC transgenesis we generated transgenic rabbits carrying and overexpressing a 110 kb rabbit genomic fragment encoding the FcRn. These transgenic rabbits – having one extra copy of the FcRn when hemizygous and two extra copies when homozygous - showed improved IgG protection and an augmented humoral immune response when immunized with a variety of different antigens. Our results in these transgenic rabbits demonstrate an increased immune response, similar to what we described in mice, indicating that FcRn overexpression brings significant advantages for the production of polyclonal and monoclonal antibodies

    Electrical Brain Stimulation During a Retrieval-Based Learning Task Can Impair Long-Term Memory

    Get PDF
    Anodal transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (DLPFC) has been shown to improve performance on a multitude of cognitive tasks. These are, however, often simple tasks, testing only one cognitive domain at a time. Therefore, the efficacy of brain stimulation for complex tasks has yet to be understood. Using a task designed to increase learning efficiency, this study investigates whether anodal tDCS over the left DLPFC can modulate both learning ability and subsequent long-term memory retention. Using a within-subject design, participants (N = 25) took part in 6 training sessions over consecutive days in which active or sham stimulation was administered randomly (3 of each). A computer-based task was used, containing flags from countries unknown to the participants. Each training session consisted of the repetition of 8 pairs of flag/country names. Subsequently, in three testing sessions, free, cued, and timed cued recall, participants were assessed on all 48 flags they had learnt. No difference in learning speed between active and sham tDCS was found. Furthermore, in the timed cued recall phase, flags learnt in the sham tDCS sessions were recalled significantly better than flags learnt in the active tDCS sessions. This effect was stronger in the second testing session. It was also found that for the flags answered incorrectly; thus, meaning they were presented more frequently, subsequent long-term retention was improved. These results suggest that for a complex task, anodal tDCS is ineffective at improving learning speed and potentially detrimental to long-term retention when employed during encoding. This serves to highlight the complex nature of brain stimulation, providing a greater understanding of its limitations and drawbacks
    corecore