97 research outputs found

    Virtual interactive musculoskeletal system (VIMS) in orthopaedic research, education and clinical patient care

    Get PDF
    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation

    The effect of a supplementary ('Gist-based') information leaflet on colorectal cancer knowledge and screening intention: a randomized controlled trial.

    Get PDF
    Guided by Fuzzy Trace Theory, this study examined the impact of a 'Gist-based' leaflet on colorectal cancer screening knowledge and intentions; and tested the interaction with participants' numerical ability. Adults aged 45-59 years from four UK general practices were randomly assigned to receive standard information ('The Facts', n = 2,216) versus standard information plus 'The Gist' leaflet (Gist + Facts, n = 2,236). Questionnaires were returned by 964/4,452 individuals (22 %). 82 % of respondents reported having read the information, but those with poor numeracy were less likely (74 vs. 88 %, p < .001). The 'Gist + Facts' group were more likely to reach the criterion for adequate knowledge (95 vs. 91 %; p < .01), but this was not moderated by numeracy. Most respondents (98 %) intended to participate in screening, with no group differences and no interaction with numeracy. The improved levels of knowledge and self-reported reading suggest 'The Gist' leaflet may increase engagement with colorectal cancer screening, but ceiling effects reduced the likelihood that screening intentions would be affected

    Public awareness of the link between alcohol and cancer in England in 2015: A population-based survey

    Get PDF
    Background: Public knowledge of the association between alcohol and cancer is reported to be low. We aimed to provide up-to-date evidence for England regarding awareness of the link between alcohol and different cancers and to determine whether awareness differs by demographic characteristics, alcohol use, and geographic region. Methods: A representative sample of 2100 adults completed an online survey in July 2015. Respondents were asked to identify which health outcomes, including specific cancers, may be caused by alcohol consumption. Logistic regressions explored whether demographic, alcohol use, and geographic characteristics predicted correctly identifying alcohol-related cancer risk. Results: Unprompted, 12.9% of respondents identified cancer as a potential health outcome of alcohol consumption. This rose to 47% when prompted (compared to 95% for liver disease and 73% for heart disease). Knowledge of the link between alcohol and specific cancers varied between 18% (breast) and 80% (liver). Respondents identified the following cancers as alcohol-related where no such evidence exists: bladder (54%), brain (32%), ovarian (17%). Significant predictors of awareness of the link between alcohol and cancer were being female, more highly educated, and living in North-East England. Conclusion: There is generally low awareness of the relationship between alcohol consumption and cancer, particularly breast cancer. Greater awareness of the relationship between alcohol and breast cancer in NorthEast England, where a mass media campaign highlighted this relationship, suggests that population awareness can be influenced by social marketing

    COMPASS identifies T-cell subsets correlated with clinical outcomes.

    Get PDF
    Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software

    FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media.</p> <p>Methods</p> <p>Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration.</p> <p>Results</p> <p>Partial differential equation (PDE) based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 <it>μ</it>m diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations.</p> <p>Conclusion</p> <p>Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for non-vascularised islet and can lead to considerable cell death (necrosis), especially in the core region of larger islets. Such models are of considerable interest to improve the function and viability of cultured, transplanted, or encapsulated islets. The present implementation allows convenient extension to true multiphysics applications that solve coupled physics phenomena such as diffusion and consumption with convection due to flowing or moving media.</p
    corecore