145 research outputs found

    Sex-Linked Pheromone Receptor Genes of the European Corn Borer, Ostrinia nubilalis, Are in Tandem Arrays

    Get PDF
    BACKGROUND: Tuning of the olfactory system of male moths to conspecific female sex pheromones is crucial for correct species recognition; however, little is known about the genetic changes that drive speciation in this system. Moths of the genus Ostrinia are good models to elucidate this question, since significant differences in pheromone blends are observed within and among species. Odorant receptors (ORs) play a critical role in recognition of female sex pheromones; eight types of OR genes expressed in male antennae were previously reported in Ostrinia moths. METHODOLOGY/PRINCIPAL FINDINGS: We screened an O. nubilalis bacterial artificial chromosome (BAC) library by PCR, and constructed three contigs from isolated clones containing the reported OR genes. Fluorescence in situ hybridization (FISH) analysis using these clones as probes demonstrated that the largest contig, which contained eight OR genes, was located on the Z chromosome; two others harboring two and one OR genes were found on two autosomes. Sequence determination of BAC clones revealed the Z-linked OR genes were closely related and tandemly arrayed; moreover, four of them shared 181-bp direct repeats spanning exon 7 and intron 7. CONCLUSIONS/SIGNIFICANCE: This is the first report of tandemly arrayed sex pheromone receptor genes in Lepidoptera. The localization of an OR gene cluster on the Z chromosome agrees with previous findings for a Z-linked locus responsible for O. nubilalis male behavioral response to sex pheromone. The 181-bp direct repeats might enhance gene duplications by unequal crossovers. An autosomal locus responsible for male response to sex pheromone in Heliothis virescens and H. subflexa was recently reported to contain at least four OR genes. Taken together, these findings support the hypothesis that generation of additional copies of OR genes can increase the potential for male moths to acquire altered specificity for pheromone components, and accordingly, facilitate differentiation of sex pheromones

    Attractiveness of a Four-component Pheromone Blend to Male Navel Orangeworm Moths

    Get PDF
    The attractiveness to male navel orangeworm moth, Amyelois transitella, of various combinations of a four-component pheromone blend was measured in wind-tunnel bioassays. Upwind flight along the pheromone plume and landing on the odor source required the simultaneous presence of two components, (11Z,13Z)-hexadecadienal and (3Z,6Z,9Z,12Z,15Z)-tricosapentaene, and the addition of either (11Z,13Z)-hexadecadien-1-ol or (11Z,13E)-hexadecadien-1-ol. A mixture of all four components produced the highest levels of rapid source location and source contact. In wind-tunnel assays, males did not seem to distinguish among a wide range of ratios of any of the three components added to (11Z,13Z)-hexadecadienal. Dosages of 10 and 100 ng of the 4-component blend produced higher levels of source location than dosages of 1 and 1,000 ng

    Field and Laboratory Responses of Male Leaf Roller Moths, Choristoneura rosaceana and Pandemis pyrusana, to Pheromone Concentrations in an Attracticide Paste Formulation

    Get PDF
    Male leafroller moths, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) and Pandemis pyrusana (Kearfott), were evaluated for responses to a paste formulation loaded with a range of concentrations of the two species' pheromone blends and evaluated in a laboratory wind tunnel and in the field. Response criteria were flight, flight towards the pheromone source, and contact with the pheromone source for the wind tunnel assays, and capture of moths in traps for the field tests. In the wind tunnel and field, responses of males of both species to the paste generally increased as the pheromone concentration in the paste was increased. There was little response by either species to paste with less than 0.16% pheromone. The relationship between pheromone concentration and response for P. pyrusana was linear and for C. rosaceana was sinusoidal over the range of pheromone concentrations tested. These patterns were seen both in the wind tunnel and in the field. Initial release rates from the paste of (Z)-11-tetradecenyl acetate, the main component of the pheromone blends of both species was 3.6–3.8 ng/h. Inhibitory thresholds for responses were not reached for either species, using pheromone concentrations as high as 16%, in either the wind tunnel or the field. For both species, response of males to rubber septa with one mg pheromone loads was similar to the response to the paste with pheromone at concentrations greater than 3–4%. For C. rosaceana, rates of contact with the paste in the wind tunnel were statistically similar to rates of contact in response to conspecific females, with paste pheromone concentrations above 1.6%. Response rates for males of P. pyrusana were significantly lower to the paste than to conspecific females at all paste pheromone concentrations tested. Overall, the optimum pheromone concentration in the paste for moth attraction to contact was 3.2 % for C. rosaceana and 8% for P. pyrusana

    The complete mitochondrial genome of the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae)

    Get PDF
    The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) currently is one of the economically most destructive pest species of stone and pome fruits worldwide. Here we sequenced the complete mitochondrial genome of this pest. This genome is 15,776 bp long, with an A + T content of 81.24%, containing 37 typical animal mitochondrial genes and an A + T-rich region. All gene are arranged as hypothesized ancestral gene order of insects except for trnM, which was shuffled from 3′ downstream of trnQ to 5′ upstream of trnI. cox1 gene uses unusual CGA start codon, as that in all other sequenced lepidopteran mitochondrial genome. The secondary structures for the two rRNA genes were predicted. All helices typically present in insect mitochondrial rRNA genes are generated. A microsatellite sequence was inserted into the region of H2347 in rrnL in G. molesta and two other sequenced tortricid mitochondrial genomes, indicating that the insertion event in this helix might occurred anciently in family Tortricidae. All of the 22 typical animal tRNA genes have a typical cloverleaf structure except for trnS2, in which the D-stem pairings in the DHU arm are absent. An intergenic sequence is present between trnQ and nad2 as well as in other sequenced lepidopteran mitochondrial genomes, which was presumed to be a remnant of trnM gene and its boundary sequences after the duplication of trnM to the upstream of trnI in Lepidoptera. The A + T-rich region is 836 bp, containing six repeat sequences of “TTATTATTATTATTAAATA(G)TTT.

    Deployment of mating disruption dispensers before and after first seasonal male flights for the control of Aonidiella aurantii in citrus

    Full text link
    The rejection of citrus fruit caused by infestations of the California red scale (CRS), Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae), raises concerns about its management. This fact has led to the introduction of new integrated control methods in citrus orchards, including the implementation of techniques based on pheromones. Previous works described efficient mating disruption pheromone dispensers to control A. aurantii in the Mediterranean region. The main aims of the present study were to adjust the timing of dispenser applications and study the importance of controlling the early first generation of A. aurantii by testing two different application dates: before and after the first CRS male flight. The efficacy of the different mating disruption strategies was tested during 2010 in an experimental orchard and these results were confirmed during 2011 in a commercial citrus farm. Results showed that every mating disruption strategy achieved significantly lower male captures in monitoring pheromone traps compared with untreated plots, as well as mean fruit infestation reductions of about 80 %. The control of the first CRS generation is not essential for achieving a good efficacy as demonstrated in two locations with different pest pressure. The late application of MD dispensers before the second CRS male flight has proven to be effective, suggesting a new advantageous way to apply mating disruption.The authors want to thank Fernando Alfaro from Denia, Antonio Caballero, and Javier Macias from Rio Tinto Fruit S.A. (Huelva, Spain) for field support. We also thank Ecologia y Proteccion Agricola SL for the pheromone supply. This work has been funded by the Spanish Ministry of Science and Innovation (project AGL2009-10725) and Agroalimed Foundation. The translation of this paper was funded by the Universidad Politecnica de Valencia (Spain).Vacas González, S.; Alfaro Cañamás, C.; Primo Millo, J.; Navarro-Llopis, V. (2015). Deployment of mating disruption dispensers before and after first seasonal male flights for the control of Aonidiella aurantii in citrus. Journal of Pest Science. 88(2):321-329. https://doi.org/10.1007/s10340-014-0623-1S321329882Avidov Z, Balshin M, Gerson U (1970) Studies on Aphytis coheni, a parasite of the California red scale, Aonidiella aurantii in Israel. Biocontrol 15:191–207Barzakay I, Hefetz A, Sternlicht M, Peleg BA, Gokkes M, Singer G, Geffen D, Kronenberg S (1986) Further field trials on management of the California red scale, Aonidiella aurantii, by mating disruption with its sex-pheromone. Phytoparasitica 14:160–161Bedford ECG (1996) Problems which we face in bringing red scale, Aonidiella aurantii (Maskell), under biological control in citrus in South Africa. Proc Int Soc Citriculture 1:485–492Campos-Rivela JM, Martínez-Ferrer MT, Fibla-Queralt JM (2012) Population dynamics and seasonal trend of California red scale (Aonidiella aurantii Maskell) in citrus in Northern Spain. Span J Agric Res 10:198–208Collins PJ, Lambkin TM, Bodnaruk P (1994) Suspected resistance to methidation in Aonidiella aurantii (Maskell) (Homoptera: diaspididae) from Queensland. J Aust Entomol Soc 33:325–326Corma A, Muñoz-Pallares J, Primo-Yufera E (1999) Production of semiochemical emitters having a controlled emission speed which are based on inorganic molecular sieves. World Patent WO9944420Corma A, Muñoz-Pallares J, Primo-Yufera E (2000) Emitter of semiochemical substances supported on a sepiolite, preparation process and applications. World Patent WO0002448DeBach P (1959) New species and strains of Aphytis (Hymenoptera: Eulophidae) parasitic on the California red scale, Aonidiella aurantii (Mask.), in the Orient. Ann Entomol Soc Am 52:354–362DeBach P, Argyriou L (1967) The colonization and success in Greece of some imported Aphytis spp. (Hymenoptera: Aphelinidae) parasitic on citrus scale insects (Homoptera: Diaspididae). Biocontrol 12:325–342Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Ann Rev Entomol 52:81–106Diari Oficial de la Comunitat Valenciana (DOCV) (2008) DOCV no. 5901, 26. Resolution 27 October 2008 of Consellería de Agricultura, Pesca y Alimentación; November 2008. http://www.docv.gva.es/datos/2008/11/26/pdf/2008_13692.pdfDomínguez-Ruiz J, Sanchis J, Navarro-Llopis V, Primo J (2008) A new long-life trimedlure dispenser for Mediterranean fruit fly. J Econ Entomol 101:1325–1330Eliahu M, Blumberg D, Horowitz AR, Ishaaya I (2007) Effect of pyriproxyfen on developing stages and embryogenesis of California red scale (CRS), Aonidiella aurantii. Pest Manag Sci 63:743–746Furness G, Buchanan G, George R, Richardson N (1983) A history of the biological and integrated control of red scale, Aonidiella aurantii on citrus in the lower Murray Valley of Australia. Biocontrol 28:99–212Grafton-Cardwell EE, Gu P (2003) Conserving vedalia beetle, Rodolia cardinalis (Mulsant) (Coleoptera : Coccinellidae), in citrus: a continuing challenge as new insecticides gain registration. J Econ Entomol 96:1388–1398Grafton-Cardwell EE, Reagan CA (1995) Selective use of insecticides for control of armored scale (Homoptera: Diaspididae) in San-Joaquin Valley California citrus. J Econ Entomol 88:1717–1725Grafton-Cardwell EE, Vehrs SLC (1995) Monitoring for organophosphate-resistant and carbamate-resistant armored scale (Homoptera: Diaspididae) in San-Joaquin Valley citrus. J Econ Entomol 88:495–504Grafton-Cardwell EE, Lee JE, Stewart JR, Olsen KD (2006) Role of two insect growth regulators in integrated pest management of citrus scales. J Econ Entomol 99:733–744Grout TG, Richards GI (1991a) Effect of buprofezin applications at different phenological times on California red scale (Homoptera: Diaspididae). J Econ Entomol 84:1802–1805Grout TG, Richards GI (1991b) Value of pheromone traps for predicting infestations of red scale, Aonidiella aurantii (Maskell) (Homoptera: Diaspididae), limited by natural enemy activity and insecticides used to control citrus thrips, Scirtothrips aurantii Faure (Thysanoptera: Thripidae). J Appl Entomol 111:20–27Grout TG, Du Toit WJ, Hofmeyr JH, Richards GI (1989) California red scale (Homoptera: Diaspididae) phenology on citrus in South Africa. J Econ Entomol 82:793–798Hefetz A, Kronengerg S, Peleg BA, Bar-zakay I (1988) Mating disruption of the California red scale Aonidiella aurantii (Homoptera: Diaspididae). In: Proceeding 6th International Citrus Congress, Tel Aviv (Israel), pp 1121–1127Hernández-Penadés P, Rodríguez-Reina JM, García-Marí F (2002) Umbrales de tratamiento para cóccidos diaspídidos en cítricos. Bol San Veg Plagas 28:469–478Hothorn T, Bretz F, Westfall P (2008) Simultaneous Inference in General Parametric Models. Biometrical J 50:346–363Ioratti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137Kehat M, Anshelevich L, Harel M, Dunkelblum E (1995) Control of the codling moth (Cydia pomonella) in apple and pear orchards in Israel by mating disruption. Phytoparasitica 23:285–296Kennett CE, Hoffmann RW (1985) Seasonal development of the California red scale (Homoptera: Diaspididae) in San Joaquin Valley citrus based on degree-day accumulation. J Econ Entomol 78:73–79Levitin E, Cohen E (1998) The involvement of acetylcholinesterase in resistance of the California red scale shape Aonidiella aurantii to organophosphorus pesticides. Entomol Exp Appl 88:115–121Lykouressis D, Perdikis D, Samartzis D, Fantinou A, Toutouzas S (2005) Management of the pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) by mating disruption in cotton fields. Crop Prot 24:177–183McLaren IW, Buchanan GA (1973) Parasitism by Aphytis chrysomphali Mercet and A. melinus Debach of Californian red scale, Aonidiella aurantii (Maskell), in relation to seasonal availability of suitable stages of the scale. Austr J Zool 21:111–117Moreno DS, Kennett CE (1985) Predictive year-end California red scale (Homoptera: Diaspididae) orange fruit infestations based on catches of males in the San-Joaquin Valley. J Econ Entomol 78:1–9Moreno DS, Luck RF (1992) Augmentative releases of Aphytis melinus (Hymenoptera: Aphelinidae) to suppress California red scale (Homoptera: Diaspididae) in southern California lemon orchards. J Econ Entomol 85:1112–1119Pekas A, Aguilar A, Tena A, García-Marí F (2010) Influence of host size on parasitism by Aphytis chrysomphali and A. melinus (Hymenoptera: Aphelinidae) in Mediterranean populations of California red scale Aonidiella aurantii (Hemiptera: Diaspididae). Biol Control 55:132–140Rill S, Grafton-Cardwell EE, Morse JG (2007) Effects of pyriproxyfen on California red scale (Hemiptera: Diaspididae) development and reproduction. J Econ Entomol 100:1435–1443Rodrigo E, Troncho P, García-Marí F (1996) Parasitoids (Hymenoptera: Aphelinidae) of three scale insects (Homoptera: Diaspididae) in a citrus grove in Valencia, Spain. Entomophaga 41:77–94Roelofs WL, Gieselmann MJ, Cardé AM, Tashiro H, Moreno DS, Henrick CA, Anderson RJ (1977) Sex-pheromone of California red scale, Aonidiella aurantii. Nature 26:698–699Rongai D, Cerato C, Lazzeri L, Palmieri S, Patalano G (2008) Vegetable oil formulation as biopesticide to control California red scale (Aonidiella aurantii Maskell). J Pest Sci 81:179–185Sorribas JJ, Rodríguez R, Rodrigo E, García-Marí F (2008) Niveles de parasitismo y especies de parasitoides del piojo rojo de california Aonidiella aurantii (Hemiptera: Diaspididae) en cítricos de la Comunidad Valenciana. Bol San Veg Plagas 34:201–210Sorribas J, van Baaren J, Garcia-Marí F (2012) Effects of climate on the introduction, distribution and biotic potential of parasitoids: applications to biological control of California red scale. Biol Control 62:103–112Staten RT, Flint HM, Weddle RC, Quintero E, Zarate RE, Finell CM, Hernandes M, Yamamoto A (1987) Pink bollworm (Lepidoptera: Gelechiidae): large-scale field trials with a high-rate gossyplure formulation. J Econ Entomol 80:1267–1271Tashiro H, Chambers DL (1967) Reproduction in the California Red Scale, Aonidiella aurantii (Homoptera: Diaspididae). I. Discovery and extraction of a female sex pheromone. Ann Entomol Soc Am 60:1166–1170Tena A, Llácer E, Urbaneja A (2013) Biological control of a non-honeydew producer mediated by a distinct hierarchy of honeydew quality. Biol Control 67:117–122University of California (1991) Integrated pest management for citrus. University of California, BerkeleyVacas S, Alfaro C, Navarro-Llopis V, Primo J (2009) The first account of the mating disruption technique for the control of California red scale Aonidiella aurantii Maskell (Homoptera: Diaspididae) using new biodegradable dispensers. Bull Entomol Res 99:415–423Vacas S, Alfaro C, Navarro-Llopis V, Primo J (2010) Mating disruption of California red scale, Aonidiella aurantii Maskell (Homoptera: Diaspididae), using biodegradable mesoporous pheromone dispensers. Pest Manag Sci 66:745–751Vacas S, Vanaclocha P, Alfaro C, Primo J, Verdú MJ, Urbaneja A, Navarro-Llopis V (2011) Mating disruption for the control of Aonidiella aurantii Maskell (Hemiptera: Diaspididae) may contribute to increased effectiveness of natural enemies. Pest Manag Sci 68:142–148Vanaclocha P, Vacas S, Alfaro C, Primo J, Verdú MJ, Navarro-Llopis V, Urbaneja A (2012) Life history parameters and scale-cover surface area of Aonidiella aurantii are altered in a mating disruption environment: implications for biological control. Pest Manag Sci 68:1092–1097Vanaclocha P, Vidal-Quist C, Oheix S, Montón H, Planes L, Catalán J, Tena A, Verdú MJ, Urbaneja A (2013) Acute toxicity in laboratory tests of fresh and aged residues of pesticides used in citrus on the parasitoid Aphytis melinus. J Pest Sci 86:329–336Yarom I, Blumberg D, Ishaaya I (1988) Effects of buprofezin on California red scale (Homoptera: Diaspididae) and Mediterranean black scale (Homoptera: Coccidae). J Econ Entomol 81:1581–1585Yust HR, Nelson HD, Busbey RL (1943) Comparative susceptibility of two strains of California red scale to HCN, with special reference to the inheritance of resistance. J Econ Entomol 36:744–74

    Intraspecific Geographic Variation of Fragrances Acquired by Orchid Bees in Native and Introduced Populations

    Get PDF
    Male orchid bees collect volatiles, from both floral and non-floral sources, that they expose as pheromone analogues (perfumes) during courtship display. The chemical profile of these perfumes, which includes terpenes and aromatic compounds, is both species-specific and divergent among closely related lineages. Thus, fragrance composition is thought to play an important role in prezygotic reproductive isolation in euglossine bees. However, because orchid bees acquire fragrances entirely from exogenous sources, the chemical composition of male perfumes is prone to variation due to environmental heterogeneity across habitats. We used Gas Chromatography/Mass Spectrometry (GC/MS) to characterize the perfumes of 114 individuals of the green orchid bee (Euglossa aff. viridissima) sampled from five native populations in Mesoamerica and two naturalized populations in the southeastern United States. We recorded a total of 292 fragrance compounds from hind-leg extracts, and found that overall perfume composition was different for each population. We detected a pronounced chemical dissimilarity between native (Mesoamerica) and naturalized (U.S.) populations that was driven both by proportional differences of common compounds as well as the presence of a few chemicals unique to each population group. Despite these differences, our data also revealed remarkable qualitative consistency in the presence of several major fragrance compounds across distant populations from dissimilar habitats. In addition, we demonstrate that naturalized bees are attracted to and collect large quantities of triclopyr 2-butoxyethyl ester, the active ingredient of several commercially available herbicides. By comparing incidence values and consistency indices across populations, we identify putative functional compounds that may play an important role in courtship signaling in this species of orchid bee

    A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    Get PDF
    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence
    corecore