9 research outputs found

    Recombinant Trimeric HA Protein Immunogenicity of H5N1 Avian Influenza Viruses and Their Combined Use with Inactivated or Adenovirus Vaccines

    Get PDF
    [[abstract]]Background:The highly pathogenic avian influenza (HPAI) H5N1 virus continues to cause disease in poultry and humans. The hemagglutinin (HA) envelope protein is the primary target for subunit vaccine development.Methodology/Principal Findings:We used baculovirus-insect cell expression to obtain trimeric recombinant HA (rHA) proteins from two HPAI H5N1 viruses. We investigated trimeric rHA protein immunogenicity in mice via immunizations, and found that the highest levels of neutralizing antibodies resulted from coupling with a PELC/CpG adjuvant. We also found that the combined use of trimeric rHA proteins with (a) an inactivated H5N1 vaccine virus, or (b) a recombinant adenovirus encoding full-length HA sequences for prime-boost immunization, further improved antibody responses against homologous and heterologous H5N1 virus strains. Data from cross-clade prime-boost immunization regimens indicate that sequential immunization with different clade HA antigens increased antibody responses in terms of total IgG level and neutralizing antibody titers.Conclusion/Significance:Our findings suggest that the use of trimeric rHA in prime-boost vaccine regimens represents an alternative strategy for recombinant H5N1 vaccine development

    The anti-influenza M2e antibody response is promoted by XCR1 targeting in pig skin

    Get PDF
    XCR1 is selectively expressed on a conventional dendritic cell subset, the cDC1 subset, through phylogenetically distant species. The outcome of antigen-targeting to XCR1 may therefore be similar across species, permitting the translation of results from experimental models to human and veterinary applications. Here we evaluated in pigs the immunogenicity of bivalent protein structures made of XCL1 fused to the external portion of the influenza virus M2 proton pump, which is conserved through strains and a candidate for universal influenza vaccines. Pigs represent a relevant target of such universal vaccines as pigs can be infected by swine, human and avian strains. We found that cDC1 were the only cell type labeled by XCR1-targeted mCherry upon intradermal injection in pig skin. XCR1-targeted M2e induced higher IgG responses in seronegative and seropositive pigs as compared to non-targeted M2e. The IgG response was less significantly enhanced by CpG than by XCR1 targeting, and CpG did not further increase the response elicited by XCR1 targeting. Monophosphoryl lipid A with neutral liposomes did not have significant effect. Thus altogether M2e-targeting to XCR1 shows promises for a trans-species universal influenza vaccine strategy, possibly avoiding the use of classical adjuvants
    corecore