2,190 research outputs found

    Effect of nickel on the microstructure and mechanical property of die-cast Al–Mg–Si–Mn alloy

    Get PDF
    The effect of nickel on the microstructure and mechanical properties of a die-cast Al–Mg–Si–Mn alloy has been investigated. The results show that the presence of Ni in the alloy promotes the formation of Ni-rich intermetallics. These occur consistently during solidification in the die-cast Al–Mg–Si–Mn alloy across different levels of Ni content. The Ni-rich intermetallics exhibit dendritic morphology during the primary solidification and lamellar morphology during the eutectic solidification stage. Ni was found to be always associated with iron forming AlFeMnSiNi intermetallics, and no Al3Ni intermetallic was observed when Ni concentrations were up to 2.06 wt% in the alloy. Although with different morphologies, the Ni-rich intermetallics were identified as the same AlFeMnSiNi phase bearing a typical composition of Al[100–140](Fe,Mn)[2–7]SiNi[4–9]. With increasing Ni content, the spacing of the α-Al–Mg2Si eutectic phase was enlarged in the Al–Mg–Si–Mn alloy. The addition of Ni to the alloy resulted in a slight increase in the yield strength, but a significant decrease in the elongation. The ultimate tensile strength (UTS) increased slightly from 300 to 320 MPa when a small amount (e.g. 0.16 wt%) of Ni was added to the alloy, but further increase of the Ni content resulted in a decrease of the UTS.The Engineering and Physical Sciences Research Council (EPSRC), Technology Strategy Board (TSB) and Jaguar Land Rover (JLR) in the United Kingdom

    Irradiation of Materials with Short, Intense Ion pulses at NDCX-II

    Full text link
    We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.Comment: 15 pages, 7 figures. revised manuscript submitted to Laser and Particle Beam

    Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico

    Get PDF
    The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the M_w 7.2 2010 El Mayor–Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130° E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15 s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone

    Stellar winds from Massive Stars

    Get PDF
    We review the various techniques through which wind properties of massive stars - O stars, AB supergiants, Luminous Blue Variables (LBVs), Wolf-Rayet (WR) stars and cool supergiants - are derived. The wind momentum-luminosity relation (e.g. Kudritzki et al. 1999) provides a method of predicting mass-loss rates of O stars and blue supergiants which is superior to previous parameterizations. Assuming the theoretical sqrt(Z) metallicity dependence, Magellanic Cloud O star mass-loss rates are typically matched to within a factor of two for various calibrations. Stellar winds from LBVs are typically denser and slower than equivalent B supergiants, with exceptional mass-loss rates during giant eruptions Mdot=10^-3 .. 10^-1 Mo/yr (Drissen et al. 2001). Recent mass-loss rates for Galactic WR stars indicate a downward revision of 2-4 relative to previous calibrations due to clumping (e.g. Schmutz 1997), although evidence for a metallicity dependence remains inconclusive (Crowther 2000). Mass-loss properties of luminous (> 10^5 Lo) yellow and red supergiants from alternative techniques remain highly contradictory. Recent Galactic and LMC results for RSG reveal a large scatter such that typical mass-loss rates lie in the range 10^-6 .. 10^-4 Mo/yr, with a few cases exhibiting 10^-3 Mo/yr.Comment: 16 pages, 2 figures, Review paper to appear in Proc `The influence of binaries on stellar population studies', Brussels, Aug 2000 (D. Vanbeveren ed.), Kluwe

    The NIH-NIAID Schistosomiasis Resource Center

    Get PDF
    A bench scientist studying schistosomiasis must make a large commitment to maintain the parasite's life cycle, which necessarily involves a mammalian (definitive) host and the appropriate species of snail (intermediate host). This is often a difficult and expensive commitment to make, especially in the face of ever-tightening funds for tropical disease research. In addition to funding concerns, investigators usually face additional problems in the allocation of sufficient lab space to this effort (especially for snail rearing) and the limited availability of personnel experienced with life cycle upkeep. These problems can be especially daunting for the new investigator entering the field. Over 40 years ago, the National Institutes of Health–National Institute of Allergy and Infectious Diseases (NIH-NIAID) had the foresight to establish a resource from which investigators could obtain various schistosome life stages without having to expend the effort and funds necessary to maintain the entire life cycle on their own. This centralized resource translated into cost savings to both NIH-NIAID and to principal investigators by freeing up personnel costs on grants and allowing investigators to divert more funds to targeted research goals. Many investigators, especially those new to the field of tropical medicine, are only vaguely, if at all, aware of the scope of materials and support provided by this resource. This review is intended to help remedy that situation. Following a short history of the contract, we will give a brief description of the schistosome species provided, provide an estimate of the impact the resource has had on the research community, and describe some new additions and potential benefits the resource center might have for the ever-changing research interests of investigators

    Identifying strategies to improve access to credible and relevant information for public health professionals: a qualitative study

    Get PDF
    BACKGROUND: Movement towards evidence-based practices in many fields suggests that public health (PH) challenges may be better addressed if credible information about health risks and effective PH practices is readily available. However, research has shown that many PH information needs are unmet. In addition to reviewing relevant literature, this study performed a comprehensive review of existing information resources and collected data from two representative PH groups, focusing on identifying current practices, expressed information needs, and ideal systems for information access. METHODS: Nineteen individual interviews were conducted among employees of two domains in a state health department – communicable disease control and community health promotion. Subsequent focus groups gathered additional data on preferences for methods of information access and delivery as well as information format and content. Qualitative methods were used to identify themes in the interview and focus group transcripts. RESULTS: Informants expressed similar needs for improved information access including single portal access with a good search engine; automatic notification regarding newly available information; access to best practice information in many areas of interest that extend beyond biomedical subject matter; improved access to grey literature as well as to more systematic reviews, summaries, and full-text articles; better methods for indexing, filtering, and searching for information; and effective ways to archive information accessed. Informants expressed a preference for improving systems with which they were already familiar such as PubMed and listservs rather than introducing new systems of information organization and delivery. A hypothetical ideal model for information organization and delivery was developed based on informants' stated information needs and preferred means of delivery. Features of the model were endorsed by the subjects who reviewed it. CONCLUSION: Many critical information needs of PH practitioners are not being met efficiently or at all. We propose a dual strategy of: 1) promoting incremental improvements in existing information delivery systems based on the expressed preferences of the PH users of the systems and 2) the concurrent development and rigorous evaluation of new models of information organization and delivery that draw on successful resources already operating to deliver information to clinical medical practitioners

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Evaporative evolution of a Na–Cl–NO(3)–K–Ca–SO(4)–Mg–Si brine at 95°C: Experiments and modeling relevant to Yucca Mountain, Nevada

    Get PDF
    A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, NV was evaporated at 95°C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved toward a complex "sulfate type" brine that contained about 45 mol % Na, 40 mol % Cl, 9 mol % NO(3), 5 mol % K, and less than 1 mol % each of SO(4), Ca, Mg, ∑CO(2)(aq), F, and Si. All measured ions in the condensed vapor phase were below detection limits. The mineral precipitates identified were halite, anhydrite, bassanite, niter, and nitratine. Trends in the solution composition and identification of CaSO(4 )solids suggest that fluorite, carbonate, sulfate, and magnesium-silicate precipitation control the aqueous solution composition of sulfate type waters by removing fluoride, calcium, and magnesium during the early stages of evaporation. In most cases, the high temperature Pitzer database, used by EQ3/6 geochemical code, sufficiently predicts water composition and mineral precipitation during evaporation. Predicted solution compositions are generally within a factor of 2 of the experimental values. The model predicts that sepiolite, bassanite, amorphous silica, calcite, halite, and brucite are the solubility controlling mineral phases

    EMBASE search strategies for identifying methodologically sound diagnostic studies for use by clinicians and researchers

    Get PDF
    BACKGROUND: Accurate diagnosis by clinicians is the cornerstone of decision making for recommending clinical interventions. The current best evidence from research concerning diagnostic tests changes unpredictably as science advances. Both clinicians and researchers need dependable access to published evidence concerning diagnostic accuracy. Bibliographic databases such as EMBASE provide the most widely available entrée to this literature. The objective of this study was to develop search strategies that optimize the retrieval of methodologically sound diagnostic studies from EMBASE for use by clinicians. METHODS: An analytic survey was conducted, comparing hand searches of 55 journals with retrievals from EMBASE for 4,843 candidate search terms and 6,574 combinations. All articles were rated using purpose and quality indicators, and clinically relevant diagnostic accuracy articles were categorized as 'pass' or 'fail' according to explicit criteria for scientific merit. Candidate search strategies were run in EMBASE, the retrievals being compared with the hand search data. The proposed search strategies were treated as "diagnostic tests" for sound studies and the manual review of the literature was treated as the "gold standard." The sensitivity, specificity, precision and accuracy of the search strategies were calculated. RESULTS: Of the 433 articles about diagnostic tests, 97 (22.4%) met basic criteria for scientific merit. Combinations of search terms reached peak sensitivities of 100% with specificity at 70.4%. Compared with best single terms, best multiple terms increased sensitivity for sound studies by 8.2% (absolute increase), but decreased specificity (absolute decrease 6%) when sensitivity was maximized. When terms were combined to maximize specificity, the single term "specificity.tw." (specificity of 98.2%) outperformed combinations of terms. CONCLUSION: Empirically derived search strategies combining indexing terms and textwords can achieve high sensitivity and specificity for retrieving sound diagnostic studies from EMBASE. These search filters will enhance the searching efforts of clinicians
    corecore