438 research outputs found

    Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells

    Get PDF
    Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer

    Magnetism and its microscopic origin in iron-based high-temperature superconductors

    Full text link
    High-temperature superconductivity in the iron-based materials emerges from, or sometimes coexists with, their metallic or insulating parent compound states. This is surprising since these undoped states display dramatically different antiferromagnetic (AF) spin arrangements and NeËŠ\rm \acute{e}el temperatures. Although there is general consensus that magnetic interactions are important for superconductivity, much is still unknown concerning the microscopic origin of the magnetic states. In this review, progress in this area is summarized, focusing on recent experimental and theoretical results and discussing their microscopic implications. It is concluded that the parent compounds are in a state that is more complex than implied by a simple Fermi surface nesting scenario, and a dual description including both itinerant and localized degrees of freedom is needed to properly describe these fascinating materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in Nature Physic

    Glyoxalase-I Is a Novel Prognosis Factor Associated with Gastric Cancer Progression

    Get PDF
    Glyoxalase I (GLO1), a methylglyoxal detoxification enzyme, is implicated in the progression of human malignancies. The role of GLO1 in gastric cancer development or progression is currently unclear. The expression of GLO1 was determined in primary gastric cancer specimens using quantitative polymerase chain reaction, immunohistochemistry (IHC), and western blotting analyses. GLO1 expression was higher in gastric cancer tissues, compared with that in adjacent noncancerous tissues. Elevated expression of GLO1 was significantly associated with gastric wall invasion, lymph node metastasis, and pathological stage, suggesting a novel role of GLO1 in gastric cancer development and progression. The 5-year survival rate of the lower GLO1 expression groups was significantly greater than that of the higher expression groups (log rank P = 0.0373) in IHC experiments. Over-expression of GLO1 in gastric cancer cell lines increases cell proliferation, migration and invasiveness. Conversely, down-regulation of GLO1 with shRNA led to a marked reduction in the migration and invasion abilities. Our data strongly suggest that high expression of GLO1 in gastric cancer enhances the metastasis ability of tumor cells in vitro and in vivo, and support its efficacy as a potential marker for the detection and prognosis of gastric cancer

    Complete Sequencing of pNDM-HK Encoding NDM-1 Carbapenemase from a Multidrug-Resistant Escherichia coli Strain Isolated in Hong Kong

    Get PDF
    BACKGROUND: The emergence of plasmid-mediated carbapenemases, such as NDM-1 in Enterobacteriaceae is a major public health issue. Since they mediate resistance to virtually all β-lactam antibiotics and there is often co-resistance to other antibiotic classes, the therapeutic options for infections caused by these organisms are very limited. METHODOLOGY: We characterized the first NDM-1 producing E. coli isolate recovered in Hong Kong. The plasmid encoding the metallo-β-lactamase gene was sequenced. PRINCIPAL FINDINGS: The plasmid, pNDM-HK readily transferred to E. coli J53 at high frequencies. It belongs to the broad host range IncL/M incompatibility group and is 88803 bp in size. Sequence alignment showed that pNDM-HK has a 55 kb backbone which shared 97% homology with pEL60 originating from the plant pathogen, Erwina amylovora in Lebanon and a 28.9 kb variable region. The plasmid backbone includes the mucAB genes mediating ultraviolet light resistance. The 28.9 kb region has a composite transposon-like structure which includes intact or truncated genes associated with resistance to β-lactams (bla(TEM-1), bla(NDM-1), Δbla(DHA-1)), aminoglycosides (aacC2, armA), sulphonamides (sul1) and macrolides (mel, mph2). It also harbors the following mobile elements: IS26, ISCR1, tnpU, tnpAcp2, tnpD, ΔtnpATn1 and insL. Certain blocks within the 28.9 kb variable region had homology with the corresponding sequences in the widely disseminated plasmids, pCTX-M3, pMUR050 and pKP048 originating from bacteria in Poland in 1996, in Spain in 2002 and in China in 2006, respectively. SIGNIFICANCE: The genetic support of NDM-1 gene suggests that it has evolved through complex pathways. The association with broad host range plasmid and multiple mobile genetic elements explain its observed horizontal mobility in multiple bacterial taxa

    A comparative ultrastructural and molecular biological study on Chlamydia psittaci infection in alpha-1 antitrypsin deficiency and non-alpha-1 antitrypsin deficiency emphysema versus lung tissue of patients with hamartochondroma

    Get PDF
    BACKGROUND: Chlamydiales are familiar causes of acute and chronic infections in humans and animals. Human pulmonary emphysema is a component of chronic obstructive pulmonary disease (COPD) and a condition in which chronic inflammation manifested as bronchiolitis and intra-alveolar accumulation of macrophages is common. It is generally presumed to be of infectious origin. Previous investigations based on serology and immunohistochemistry indicated Chlamydophila pneumoniae infection in cases of COPD. Furthermore, immunofluorescence with genus-specific antibodies and electron microscopy suggested involvement of chlamydial infection in most cases of pulmonary emphysema, but these findings could not be verified by PCR. Therefore, we examined the possibility of other chlamydial species being present in these patients. METHODS: Tissue samples from patients having undergone lung volume reduction surgery for advanced alpha-1 antitrypsin deficiency (AATD, n = 6) or non-alpha-1 antitrypsin deficiency emphysema (n = 34) or wedge resection for hamartochondroma (n = 14) were examined by transmission electron microscopy and PCR. RESULTS: In all cases of AATD and 79.4% of non-AATD, persistent chlamydial infection was detected by ultrastructural examination. Intra-alveolar accumulation of macrophages and acute as well as chronic bronchiolitis were seen in all positive cases. The presence of Chlamydia psittaci was demonstrated by PCR in lung tissue of 66.7% AATD vs. 29.0% non-AATD emphysema patients. Partial DNA sequencing of four positive samples confirmed the identity of the agent as Chlamydophila psittaci. In contrast, Chlamydophila pneumoniae was detected only in one AATD patient. Lung tissue of the control group of non-smokers with hamartochondroma was completely negative for chlamydial bodies by TEM or chlamydial DNA by PCR. CONCLUSIONS: These data indicate a role of Chlamydophila psittaci in pulmonary emphysema by linking this chronic inflammatory process to a chronic infectious condition. This raises interesting questions on pathogenesis and source of infection

    Effects of small interfering RNA targeting thymidylate synthase on survival of ACC3 cells from salivary adenoid cystic carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thymidylate synthase (TS) is an important target for chemotherapeutic treatment of cancer and high expression of TS has been associated with poor prognosis or refractory disease in several cancers including colorectal and head and neck cancer. Although TS is known to regulate cell cycles and transcription factors, its potency as a therapeutic target has not been fully explored in adenoid cystic carcinoma (ACC).</p> <p>Methods</p> <p>An ACC cell line (ACC3) was transfected with siRNA targeting the TS gene and inhibition of cell growth and induction of apoptosis-associated molecules were evaluated <it>in vitro</it>. In addition, the <it>in vivo </it>effect of TS siRNA on tumor progression was assessed using a xenograft model.</p> <p>Results</p> <p>Our results demonstrated that ACC3 cells showed significantly higher TS expression than non-cancer cell lines and the induction of TS siRNA led to inhibition of cell proliferation. The effect was associated with an increase in p53, p21, and active caspase-3 and S-phase accumulation. We also found up-regulation of spermidine/spermine N1-acetyltransferase (SSAT), a polyamine metabolic enzyme. Furthermore, treatment with TS siRNA delivered by atelocollagen showed a significant cytostatic effect through the induction of apoptosis in a xenograft model.</p> <p>Conclusion</p> <p>TS may be an important therapeutic target and siRNA targeting TS may be of potential therapeutic value in ACC.</p

    Rapamycin induces glucose intolerance in mice by reducing islet mass, insulin content, and insulin sensitivity

    Get PDF
    Rapamycin, a specific inhibitor for mTOR complex 1, is an FDA-approved immunosuppressant for organ transplant. Recent developments have raised the prospect of using rapamycin to treat cancer or diabetes and to delay aging. It is therefore important to assess how rapamycin treatment affects glucose homeostasis. Here, we show that the same rapamycin treatment reported to extend mouse life span significantly impaired glucose homeostasis of aged mice. Moreover, rapamycin treatment of lean C57B/L6 mice reduced glucose-stimulated insulin secretion in vivo and ex vivo as well as the insulin content and beta cell mass of pancreatic islets. Confounding the diminished capacity for insulin release, rapamycin decreased insulin sensitivity. The multitude of rapamycin effects thus all lead to glucose intolerance. As our findings reveal that chronic rapamycin treatment could be diabetogenic, monitoring glucose homeostasis is crucial when using rapamycin as a therapeutic as well as experimental reagent

    Targeting of distinct signaling cascades and cancer-associated fibroblasts define the efficacy of Sorafenib against prostate cancer cells

    Get PDF
    Sorafenib, a multi-tyrosine kinase inhibitor, kills more effectively the non-metastatic prostate cancer cell line 22Rv1 than the highly metastatic prostate cancer cell line PC3. In 22Rv1 cells, constitutively active STAT3 and ERK are targeted by sorafenib, contrasting with PC3 cells, in which these kinases are not active. Notably, overexpression of a constitutively active MEK construct in 22Rv1 cells stimulates the sustained phosphorylation of Bad and protects from sorafenib-induced cell death. In PC3 cells, Src and AKT are constitutively activated and targeted by sorafenib, leading to an increase in Bim protein levels. Overexpression of constitutively active AKT or knockdown of Bim protects PC3 cells from sorafenib-induced killing. In both PC3 and 22Rv1 cells, Mcl-1 depletion is required for the induction of cell death by sorafenib as transient overexpression of Mcl-1 is protective. Interestingly, co-culturing of primary cancer-associated fibroblasts (CAFs) with 22Rv1 or PC3 cells protected the cancer cells from sorafenib-induced cell death, and this protection was largely overcome by co-administration of the Bcl-2 antagonist, ABT737. In summary, the differential tyrosine kinase profile of prostate cancer cells defines the cytotoxic efficacy of sorafenib and this profile is modulated by CAFs to promote resistance. The combination of sorafenib with Bcl-2 antagonists, such as ABT737, may constitute a promising therapeutic strategy against prostate cancer

    Angiogenesis inhibitors in the treatment of prostate cancer

    Get PDF
    Prostate cancer remains a significant public health problem, with limited therapeutic options in the setting of castrate-resistant metastatic disease. Angiogenesis inhibition is a relatively novel antineoplastic approach, which targets the reliance of tumor growth on the formation of new blood vessels. This strategy has been used successfully in other solid tumor types, with the FDA approval of anti-angiogenic agents in breast, lung, colon, brain, and kidney cancer. The application of anti-angiogenic therapy to prostate cancer is reviewed in this article, with attention to efficacy and toxicity results from several classes of anti-angiogenic agents. Ultimately, the fate of anti-angiogenic agents in prostate cancer rests on the eagerly anticipated results of several key phase III studies
    • …
    corecore