47 research outputs found

    PROPEL: implementation of an evidence based pelvic floor muscle training intervention for women with pelvic organ prolapse: a realist evaluation and outcomes study protocol

    Get PDF
    Abstract Background Pelvic Organ Prolapse (POP) is estimated to affect 41%–50% of women aged over 40. Findings from the multi-centre randomised controlled “Pelvic Organ Prolapse PhysiotherapY” (POPPY) trial showed that individualised pelvic floor muscle training (PFMT) was effective in reducing symptoms of prolapse, improved quality of life and showed clear potential to be cost-effective. However, provision of PFMT for prolapse continues to vary across the UK, with limited numbers of women’s health physiotherapists specialising in its delivery. Implementation of this robust evidence from the POPPY trial will require attention to different models of delivery (e.g. staff skill mix) to fit with differing care environments. Methods A Realist Evaluation (RE) of implementation and outcomes of PFMT delivery in contrasting NHS settings will be conducted using multiple case study sites. Involving substantial local stakeholder engagement will permit a detailed exploration of how local sites make decisions on how to deliver PFMT and how these lead to service change. The RE will track how implementation is working; identify what influences outcomes; and, guided by the RE-AIM framework, will collect robust outcomes data. This will require mixed methods data collection and analysis. Qualitative data will be collected at four time-points across each site to understand local contexts and decisions regarding options for intervention delivery and to monitor implementation, uptake, adherence and outcomes. Patient outcome data will be collected at baseline, six months and one year follow-up for 120 women. Primary outcome will be the Pelvic Organ Prolapse Symptom Score (POP-SS). An economic evaluation will assess the costs and benefits associated with different delivery models taking account of further health care resource use by the women. Cost data will be combined with the primary outcome in a cost effectiveness analysis, and the EQ-5D-5L data in a cost utility analysis for each of the different models of delivery. Discussion Study of the implementation of varying models of service delivery of PFMT across contrasting sites combined with outcomes data and a cost effectiveness analysis will provide insight into the implementation and value of different models of PFMT service delivery and the cost benefits to the NHS in the longer term

    Relative contributions of adipose-resident CD146 pericytes and CD34 adventitial progenitor cells in bone tissue engineering

    Get PDF
    Bone repair: synergistic healing from two types of fat cells Different kinds of cells found surrounding blood vessels in fat play a complementary and synergistic role in bone healing. Aaron James from Johns Hopkins University in Baltimore, MD, USA, and colleagues derived two subsets of cells from human fat tissue: contractile cells known as pericytes that wrap around cellular lining of capillaries and tiny veins; and connective tissue cells known as adventitial cells that surrounds larger vessels. Under isolated culture conditions, pericytes stimulated the development of primitive blood vessels, whereas adventitial cells promoted early bone formation. The researchers applied the cells to the sites of bone defects in mice and saw that combined treatment with both pericytes and adventitial cells led to greater bone repair than treatment with either cell type alone

    Respiratory and immune response to maximal physical exertion following exposure to secondhand smoke in healthy adults

    Get PDF
    © 2012 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0031880We assessed the cardiorespiratory and immune response to physical exertion following secondhand smoke (SHS) exposure through a randomized crossover experiment. Data were obtained from 16 (8 women) non-smoking adults during and following a maximal oxygen uptake cycling protocol administered at baseline and at 0-, 1-, and 3- hours following 1-hour of SHS set at bar/restaurant carbon monoxide levels. We found that SHS was associated with a 12% decrease in maximum power output, an 8.2% reduction in maximal oxygen consumption, a 6% increase in perceived exertion, and a 6.7% decrease in time to exhaustion (P<0.05). Moreover, at 0-hours almost all respiratory and immune variables measured were adversely affected (P<0.05). For instance, FEV 1 values at 0-hours dropped by 17.4%, while TNF-α increased by 90.1% (P<0.05). At 3-hours mean values of cotinine, perceived exertion and recovery systolic blood pressure in both sexes, IL4, TNF-α and IFN-γ in men, as well as FEV 1/FVC, percent predicted FEV 1, respiratory rate, and tidal volume in women remained different compared to baseline (P<0.05). It is concluded that a 1-hour of SHS at bar/restaurant levels adversely affects the cardiorespiratory and immune response to maximal physical exertion in healthy nonsmokers for at least three hours following SHS. © 2012 Flouris et al.Published versio

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Drug discovery in advanced prostate cancer: translating biology into therapy.

    Get PDF
    Castration-resistant prostate cancer (CRPC) is associated with a poor prognosis and poses considerable therapeutic challenges. Recent genetic and technological advances have provided insights into prostate cancer biology and have enabled the identification of novel drug targets and potent molecularly targeted therapeutics for this disease. In this article, we review recent advances in prostate cancer target identification for drug discovery and discuss their promise and associated challenges. We review the evolving therapeutic landscape of CRPC and discuss issues associated with precision medicine as well as challenges encountered with immunotherapy for this disease. Finally, we envision the future management of CRPC, highlighting the use of circulating biomarkers and modern clinical trial designs
    corecore