151 research outputs found

    Reduced metabolism supports hypoxic flight in the high-flying bar-headed goose (Anser indicus)

    Get PDF
    This is the final version. Available on open access from eLife Sciences Publications via the DOI in this recordThe bar-headed goose is famed for migratory flight at extreme altitude. To better understand the physiology underlying this remarkable behavior, we imprinted and trained geese, collecting the first cardiorespiratory measurements of bar-headed geese flying at simulated altitude in a wind tunnel. Metabolic rate during flight increased 16-fold from rest, supported by an increase in the estimated amount of O2 transported per heartbeat and a modest increase in heart rate. The geese appear to have ample cardiac reserves, as heart rate during hypoxic flights was not higher than in normoxic flights. We conclude that flight in hypoxia is largely achieved via the reduction in metabolic rate compared to normoxia. Arterial Po2 was maintained throughout flights. Mixed venous PO2 decreased during the initial portion of flights in hypoxia, indicative of increased tissue O2 extraction. We also discovered that mixed venous temperature decreased during flight, which may significantly increase oxygen loading to hemoglobin.National Science FoundationNatural Sciences and Engineering Research Council of Canada (NSERC

    Tackling the Tibetan Plateau in a down suit: Insights into thermoregulation by bar-headed geese during migration

    Get PDF
    This is the final version. Available from Company of Biologists via the DOI in this recordData accessibility: Following the manuscript being accepted data will be uploaded to a public repository such as Dryad.Birds migrating through extreme environments can experience a range of challenges while matching the demands of flight, including highly variable ambient temperatures, humidity and oxygen levels. However, there has been limited research into avian thermoregulation during migration in extreme environments. This study aimed to investigate the effect of flight performance and high-altitude on body temperature (Tb) of free flying bar-headed geese (Anser indicus), a species that completes a high-altitude trans-Himalayan migration through very cold, hypoxic environments. We measured abdominal Tb, along with altitude (via changes in barometric pressure), heart rate and body acceleration of bar-headed geese during their migration across the Tibetan Plateau. Bar-headed geese vary the circadian rhythm of Tb in response to migration, with peak daily Tb during daytime hours outside of migration but early in the morning or overnight during migration, reflecting changes in body acceleration. However, during flights changes in Tb were not consistent with changes in flight performance (as measured by heart rate or rate of ascent) or altitude. Overall, our results suggest that bar-headed geese are able to thermoregulate during high-altitude migration, maintaining Tb within a relatively narrow range despite appreciable variation in flight intensity and environmental conditions.Biotechnology and Biological Sciences Research Council (BBSRC)Natural Sciences and Engineering Research Council of Canada (NSERC)Max Planck Institute for OrnithologyUS Geological SurveyWestern Ecological and Patuxent Wildlife Research Centers, Avian Influenza Programm

    Control of breathing and respiratory gas exchange in high-altitude ducks native to the Andes

    Get PDF
    We examined the control of breathing and respiratory gas exchange in six species of high-altitude duck that independently colonized the high Andes. We compared ducks from high-altitude populations in Peru (Lake Titicaca at ∼3800 m above sea level; Chancay River at ∼3000–4100 m) with closely related populations or species from low altitude. Hypoxic ventilatory responses were measured shortly after capture at the native altitude. In general, ducks responded to acute hypoxia with robust increases in total ventilation and pulmonary O2 extraction. O2 consumption rates were maintained or increased slightly in acute hypoxia, despite ∼1–2°C reductions in body temperature in most species. Two high-altitude taxa – yellow-billed pintail and torrent duck – exhibited higher total ventilation than their low-altitude counterparts, and yellow-billed pintail exhibited greater increases in pulmonary O2 extraction in severe hypoxia. In contrast, three other high-altitude taxa – Andean ruddy duck, Andean cinnamon teal and speckled teal – had similar or slightly reduced total ventilation and pulmonary O2 extraction compared with low-altitude relatives. Arterial O2 saturation (SaO2) was elevated in yellow-billed pintails at moderate levels of hypoxia, but there were no differences in SaO2 in other high-altitude taxa compared with their close relatives. This finding suggests that improvements in SaO2 in hypoxia can require increases in both breathing and haemoglobin–O2 affinity, because the yellow-billed pintail was the only high-altitude duck with concurrent increases in both traits compared with its low-altitude relative. Overall, our results suggest that distinct physiological strategies for coping with hypoxia can exist across different high-altitude lineages, even among those inhabiting very similar high-altitude habitats

    Do Bar-Headed Geese Train for High Altitude Flights?

    Get PDF
    This is the author accepted manuscript. The final version is available from OUP via the DOI in this recordSYNOPSIS: Exercise at high altitude is extremely challenging, largely due to hypobaric hypoxia (low oxygen levels brought about by low air pressure). In humans, the maximal rate of oxygen consumption decreases with increasing altitude, supporting progressively poorer performance. Bar-headed geese (Anser indicus) are renowned high altitude migrants and, although they appear to minimize altitude during migration where possible, they must fly over the Tibetan Plateau (mean altitude 4800 m) for much of their annual migration. This requires considerable cardiovascular effort, but no study has assessed the extent to which bar-headed geese may train prior to migration for long distances, or for high altitudes. Using implanted loggers that recorded heart rate, acceleration, pressure, and temperature, we found no evidence of training for migration in bar-headed geese. Geese showed no significant change in summed activity per day or maximal activity per day. There was also no significant change in maximum heart rate per day or minimum resting heart rate, which may be evidence of an increase in cardiac stroke volume if all other variables were to remain the same. We discuss the strategies used by bar-headed geese in the context of training undertaken by human mountaineers when preparing for high altitude, noting the differences between their respective cardiovascular physiology.This work was supported by the UK Biotechnology and Biological Sciences Research Council [BBSRC; BB/FO15615/1 to C.M.B. and P.J.B.]. Authors were supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) award [W.K.M.], and the FAO through the Animal Health Service EMPRES surveillance program

    Assessment of SARS-CoV-2 Immunity in Convalescent Children and Adolescents

    Get PDF
    Persistence of protective immunity for SARS-CoV-2 is important against reinfection. Knowledge on SARS-CoV-2 immunity in pediatric patients is currently lacking. We opted to assess the SARS-CoV-2 adaptive immunity in recovered children and adolescents, addressing the pediatrics specific immunity towards COVID-19. Two independent assays were performed to investigate humoral and cellular immunological memory in pediatric convalescent COVID-19 patients. Specifically, RBD IgG, CD4+, and CD8+ T cell responses were identified and quantified in recovered children and adolescents. SARS-CoV-2-specific RBD IgG detected in recovered patients had a half-life of 121.6 days and estimated duration of 7.9 months compared with baseline levels in controls. The specific T cell response was shown to be independent of days after diagnosis. Both CD4+ and CD8+ T cells showed robust responses not only to spike (S) peptides (a main target of vaccine platforms) but were also similarly activated when stimulated by membrane (M) and nuclear (N) peptides. Importantly, we found the differences in the adaptive responses were correlated with the age of the recovered patients. The CD4+ T cell response to SARS-CoV-2 S peptide in children aged <12 years correlated with higher SARS-CoV-2 RBD IgG levels, suggesting the importance of a T cell-dependent humoral response in younger children under 12 years. Both cellular and humoral immunity against SARS-CoV-2 infections can be induced in pediatric patients. Our important findings provide fundamental knowledge on the immune memory responses to SARS-CoV-2 in recovered pediatric patients

    Respiratory mechanics of eleven avian species resident at high and low altitude

    Get PDF
    The metabolic cost of breathing at rest has never been successfully measured in birds, but has been hypothesized to be higher than in mammals of a similar size because of the rocking motion of the avian sternum being encumbered by the pectoral flight muscles. To measure the cost and work of breathing, and to investigate whether species resident at high altitude exhibit morphological or mechanical changes that alter the work of breathing, we studied 11 species of waterfowl: five from high altitudes (>3000 m) in Peru, and six from low altitudes in Oregon, USA. Birds were anesthetized and mechanically ventilated in sternal recumbency with known tidal volumes and breathing frequencies. The work done by the ventilator was measured, and these values were applied to the combinations of tidal volumes and breathing frequencies used by the birds to breathe at rest. We found the respiratory system of high-altitude species to be of a similar size, but consistently more compliant than that of low altitude sister taxa, although this did not translate to a significantly reduced work of breathing. The metabolic cost of breathing was estimated to be between 1 and 3% of basal metabolic rate, as low or lower than estimates for other groups of tetrapods

    HLA alleles associated with asparaginase hypersensitivity in Chinese children

    Get PDF
    Asparaginase is an important drug to treat childhood haematological malignancies. Data on the association between human leukocyte antigens (HLA) and asparaginase hypersensitivity among Chinese are lacking. We conducted a retrospective study to identify HLA alleles associated with asparaginase hypersensitivity among Chinese children with acute lymphoblastic leukaemia (ALL), mixed phenotype leukaemia and non-Hodgkin lymphoma (NHL), who received asparaginases with HLA typing performed between 2009 and 2019. 107 Chinese patients were analysed. 66.3% (71/107) developed hypersensitivity to at least one of the asparaginases. HLA-B*46:01 (OR 3.8, 95% CI 1.4-10.1, p < 0.01) and DRB1*09:01 (OR 4.3, 95% CI 1.6-11.4, p < 0.01) were significantly associated with L-asparaginase hypersensitivities, which remained significant after adjustment for age, gender and B cell ALL [HLA-B*46:01 (adjusted OR 3.5, 95% 1.3-10.5, p = 0.02) and DRB1*09:01 (OR 4.4, 95% CI 1.6-13.3, p < 0.01)]

    Clinical Characteristics and Transmission of COVID-19 in Children and Youths During 3 Waves of Outbreaks in Hong Kong

    Get PDF
    IMPORTANCE: Schools were closed intermittently across Hong Kong to control the COVID-19 outbreak, which led to significant physical and psychosocial problems among children and youths. OBJECTIVE: To compare the clinical characteristics and sources of infection among children and youths with COVID-19 during the 3 waves of outbreaks in Hong Kong in 2020. DESIGN, SETTING AND PARTICIPANTS: This cross-sectional study involved children and youths aged 18 years or younger with COVID-19 in the 3 waves of outbreaks from January 23 through December 2, 2020. Data were analyzed from December 2020 through January 2021. MAIN OUTCOMES AND MEASURES: Demographic characteristics, travel and contact histories, lengths of hospital stay, and symptoms were captured through the central electronic database. Individuals who were infected without recent international travel were defined as having domestic infections. RESULTS: Among 397 children and youths confirmed with COVID-19 infections, the mean (SD) age was 9.95 (5.34) years, 220 individuals (55.4%) were male, and 154 individuals (38.8%) were asymptomatic. There were significantly more individuals who were infected without symptoms in the second wave (59 of 118 individuals [50.0%]) and third wave (94 of 265 individuals [35.5%]) than in the first wave (1 of 14 individuals [7.1%]) (P = .001). Significantly fewer individuals who were infected in the second and third waves, compared with the first wave, had fever (first wave: 10 individuals [71.4%]; second wave: 22 individuals [18.5%]; third wave: 98 individuals [37.0%]; P < .001) or cough (first wave: 6 individuals [42.9%]; second wave: 15 individuals [12.7%]; third wave: 52 individuals [19.6%]; P = .02). Among all individuals, 394 individuals (99.2%) had mild illness. One patient developed chilblains (ie, COVID toes), 1 patient developed multisystem inflammatory syndrome in children, and 1 patient developed post–COVID-19 autoimmune hemolytic anemia. In all 3 waves, 204 patients with COVID-19 (51.4%) had domestic infections. Among these individuals, 186 (91.2%) reported having a contact history with another individual with COVID-19, of which most (183 individuals [90.0%]) were family members. In the third wave, 18 individuals with domestic infections had unknown contact histories. Three schoolmates were confirmed with COVID-19 on the same day and were reported to be close contacts. CONCLUSIONS AND RELEVANCE: his cross-sectional study found that nearly all children and youths with COVID-19 in Hong Kong had mild illness. These findings suggest that household transmission was the main source of infection for children and youths with domestic infections and that the risk of being infected at school was small
    • …
    corecore