113 research outputs found

    An Autonomous Sailboat for Environment Monitoring

    Get PDF
    The marine environment is constantly at risk from coastal urbanization. The deterioration of coastal and marine environments is evidenced by the decline of mangroves and the biodiversity of such environments and increasing recurrences of algal and jellyfish blooms. There is a lack of environmental data especially in developing countries such as Malaysia to determine the sustainability and impact of the current development on coastal resources. We developed an autonomous sailboat that utilizes the Internet of things technology to collect and analyze ocean water quality data for local authorities to obtain insights into the sustainable development of coastal resources. The USV is equipped with sensors, microcontrollers, and a wireless communication module based on ZigBee standards to allow sending water quality data to a gateway located at the shore. The data collected by the USV will be processed by a cloud server and visualized through user applications

    Quantifying loopy network architectures

    Get PDF
    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the Asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.Comment: 17 pages, 8 figures. During preparation of this manuscript the authors became aware of the work of Mileyko at al., concurrently submitted for publicatio

    VHL Type 2B Mutations Retain VBC Complex Form and Function

    Get PDF
    Background: von Hippel-Lindau disease is characterized by a spectrum of hypervascular tumors, including renal cell carcinoma, hemangioblastoma, and pheochromocytoma, which occur with VHL genotype-specific differences in penetrance. VHL loss causes a failure to regulate the hypoxia inducible factors (HIF-1a and HIF-2a), resulting in accumulation of both factors to high levels. Although HIF dysregulation is critical to VHL disease-associated renal tumorigenesis, increasing evidence points toward gradations of HIF dysregulation contributing to the degree of predisposition to renal cell carcinoma and other manifestations of the disease. Methodology/Principal Findings: This investigation examined the ability of disease-specific VHL missense mutations to support the assembly of the VBC complex and to promote the ubiquitylation of HIF. Our interaction analysis supported previous observations that VHL Type 2B mutations disrupt the interaction between pVHL and Elongin C but maintain partial regulation of HIF. We additionally demonstrated that Type 2B mutant pVHL forms a remnant VBC complex containing the active members ROC1 and Cullin-2 which retains the ability to ubiquitylate HIF-1a. Conclusions: Our results suggest that subtypes of VHL mutations support an intermediate level of HIF regulation via a remnant VBC complex. These findings provide a mechanism for the graded HIF dysregulation and genetic predisposition fo

    Informational entropy : a failure tolerance and reliability surrogate for water distribution networks

    Get PDF
    Evolutionary algorithms are used widely in optimization studies on water distribution networks. The optimization algorithms use simulation models that analyse the networks under various operating conditions. The solution process typically involves cost minimization along with reliability constraints that ensure reasonably satisfactory performance under abnormal operating conditions also. Flow entropy has been employed previously as a surrogate reliability measure. While a body of work exists for a single operating condition under steady state conditions, the effectiveness of flow entropy for systems with multiple operating conditions has received very little attention. This paper describes a multi-objective genetic algorithm that maximizes the flow entropy under multiple operating conditions for any given network. The new methodology proposed is consistent with the maximum entropy formalism that requires active consideration of all the relevant information. Furthermore, an alternative but equivalent flow entropy model that emphasizes the relative uniformity of the nodal demands is described. The flow entropy of water distribution networks under multiple operating conditions is discussed with reference to the joint entropy of multiple probability spaces, which provides the theoretical foundation for the optimization methodology proposed. Besides the rationale, results are included that show that the most robust or failure-tolerant solutions are achieved by maximizing the sum of the entropies

    HPV infection and p53 and p16 expression in esophageal cancer: are they prognostic factors?

    Get PDF
    Background: Esophageal squamous cell carcinoma (ESCC) is a highly lethal malignant tumor. Currently, Human papillomavirus (HPV) is suggested as a potential risk factor for esophageal cancer (EC) in addition to the classic risk factors, alcohol and tobacco, but this hypothesis still remains contradictory. We sought to investigate wether HPV and well-known biomarkers (p16 and p53) and patient-related factors that may have impact on survival of ESCC. Methods: We conducted a prospective cohort study. By using multiplex PCR, we determined the prevalence of high risk HPV in ESCC, and evaluated the immunohistochemical expression of p16 and p53, molecular markers related to esophageal carcinogenesis in order to verify the potential influence of these variables in patients's survival. Survival rates were estimated using Kaplan-Meier methods. A multivariate confirmatory model was performed using Cox proportional hazards regression. Results: Twelve (13.8%) of 87 patients were HPV-DNA positive. Positive reactions of p16 and p53 were 10.7% and 68.6%, respectively. Kaplan-Meier analysis indicated that men (p = 0.025) had poor specific-cancer survival and a shorter progression-free survival (p = 0.050) as compared to women; III or IV clinical stage (p < 0.019) had poor specific-cancer survival and a shorter progression-free survival (p < 0.001) compared to I and II clinical stage; not submitted to surgery (< 0.001) and not submitted to chemoradiotherapy (p = 0.039) had a poor specific-cancer survival, as well. The multivariate analysis showed that HPV, p16 and p53 status are not predictive parameters of progression-free and specific-cancer survival. Conclusion: HPV infection and p53 and p16 expression are not prognostic factors in ESCC.CNPq Universal for providing supplies to the largest study, of which this study is a part of, entitled “The role of human papillomavirus (HPV) as the etiologic agent of esophageal cancer. A cross-sectional study, case-control and longitudinal at Barretos Cancer Hospital”; (Grant number 482666/2012–9 to ALF); INCT HPV [Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grant number 08/57889–1 to LLV]; Conselho Nacional de Desenvolvimento Científico e Tencnológico (CNPq) (Grant number 573799/ 2008–3 to LLV)].info:eu-repo/semantics/publishedVersio

    Endogenous laminin is required for human airway smooth muscle cell maturation

    Get PDF
    BACKGROUND: Airway smooth muscle (ASM) contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM) components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. METHODS: Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. RESULTS: Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP) significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. CONCLUSION: While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the first time that endogenously expressed laminin is required for ASM maturation to the contractile phenotype. As endogenously expressed laminin chains α2, β1 and γ1 are uniquely increased during myocyte maturation, these laminin chains may be key in this process. Thus, human ASM maturation appears to involve regulated endogenous expression of a select set of laminin chains that are essential for accumulation of contractile phenotype myocytes

    Cyclic AMP signalling pathways in the regulation of uterine relaxation

    Get PDF
    Studying the mechanism(s) of uterine relaxation is important and will be helpful in the prevention of obstetric difficulties such as preterm labour, which remains a major cause of perinatal mortality and morbidity. Multiple signalling pathways regulate the balance between maintaining relative uterine quiescence during gestation, and the transition to the contractile state at the onset of parturition. Elevation of intracellular cyclic AMP promotes myometrial relaxation, and thus quiescence, via effects on multiple intracellular targets including calcium channels, potassium channels and myosin light chain kinase. A complete understanding of cAMP regulatory pathways (synthesis and hydrolysis) would assist in the development of better tocolytics to delay or inhibit preterm labour. Here we review the enzymes involved in cAMP homoeostasis (adenylyl cyclases and phosphodiesterases) and possible myometrial substrates for the cAMP dependent protein kinase. We must emphasise the need to identify novel pharmacological targets in human pregnant myometrium to achieve safe and selective uterine relaxation when this is indicated in preterm labour or other obstetric complications

    Inhibition of Dengue Virus Entry and Multiplication into Monocytes Using RNA Interference

    Get PDF
    Prevention and treatment of dengue infection remain a serious global public health priority. Extensive efforts are required toward the development of vaccines and discovery of potential therapeutic compounds against the dengue viruses. Dengue virus entry is a critical step for virus reproduction and establishes the infection. Hence, the blockade of dengue virus entry into the host cell is an interesting antiviral strategy as it represents a barrier to suppress the onset of infection. This study was achieved by using RNA interference to silence the cellular receptor, and the clathrin mediated endocytosis that enhances the entry of dengue virus in monocytes. Results showed a marked reduction of infected monocytes by flow cytometry. In addition, both intracellular and extracellular viral RNA load was shown to be reduced in treated monocytes when compared to untreated monocytes. Based on these findings, this study concludes that this therapeutic strategy of blocking the virus replication at the first stage of multiplication might serve as a hopeful drug to mitigate the dengue symptoms, and reduction the disease severity

    RNA Interference Mediated Inhibition of Dengue Virus Multiplication and Entry in HepG2 Cells

    Get PDF
    Background: Dengue virus-host cell interaction initiates when the virus binds to the attachment receptors followed by endocytic internalization of the virus particle. Successful entry into the cell is necessary for infection initiation. Currently, there is no protective vaccine or antiviral treatment for dengue infection. Targeting the viral entry pathway has become an attractive therapeutic strategy to block infection. This study aimed to investigate the effect of silencing the GRP78 and clathrin-mediated endocytosis on dengue virus entry and multiplication into HepG2 cells. Methodology/Principal Findings: HepG2 cells were transfected using specific siRNAs to silence the cellular surface receptor (GRP78) and clathrin-mediated endocytosis pathway. Gene expression analysis showed a marked down-regulation of the targeted genes (87.2%, 90.3%, and 87.8 % for GRP78, CLTC, and DNM2 respectively) in transfected HepG2 cells when measured by RT-qPCR. Intracellular and extracellular viral RNA loads were quantified by RT-qPCR to investigate the effect of silencing the attachment receptor and clathrin-mediated endocytosis on dengue virus entry. Silenced cells showed a significant reduction of intracellular (92.4%) and extracellular viral RNA load (71.4%) compared to non-silenced cells. Flow cytometry analysis showed a marked reduction of infected cells (89.7%) in silenced HepG2 cells compared to non-silenced cells. Furthermore, the ability to generate infectious virions using the plaque assay was reduced 1.07 log in silenced HepG2 cells
    corecore