25 research outputs found

    Genome-Wide Association Study Identifies Chromosome 10q24.32 Variants Associated with Arsenic Metabolism and Toxicity Phenotypes in Bangladesh

    Get PDF
    Arsenic contamination of drinking water is a major public health issue in many countries, increasing risk for a wide array of diseases, including cancer. There is inter-individual variation in arsenic metabolism efficiency and susceptibility to arsenic toxicity; however, the basis of this variation is not well understood. Here, we have performed the first genome-wide association study (GWAS) of arsenic-related metabolism and toxicity phenotypes to improve our understanding of the mechanisms by which arsenic affects health. Using data on urinary arsenic metabolite concentrations and approximately 300,000 genome-wide single nucleotide polymorphisms (SNPs) for 1,313 arsenic-exposed Bangladeshi individuals, we identified genome-wide significant association signals (P<5×10−8) for percentages of both monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) near the AS3MT gene (arsenite methyltransferase; 10q24.32), with five genetic variants showing independent associations. In a follow-up analysis of 1,085 individuals with arsenic-induced premalignant skin lesions (the classical sign of arsenic toxicity) and 1,794 controls, we show that one of these five variants (rs9527) is also associated with skin lesion risk (P = 0.0005). Using a subset of individuals with prospectively measured arsenic (n = 769), we show that rs9527 interacts with arsenic to influence incident skin lesion risk (P = 0.01). Expression quantitative trait locus (eQTL) analyses of genome-wide expression data from 950 individual's lymphocyte RNA suggest that several of our lead SNPs represent cis-eQTLs for AS3MT (P = 10−12) and neighboring gene C10orf32 (P = 10−44), which are involved in C10orf32-AS3MT read-through transcription. This is the largest and most comprehensive genomic investigation of arsenic metabolism and toxicity to date, the only GWAS of any arsenic-related trait, and the first study to implicate 10q24.32 variants in both arsenic metabolism and arsenical skin lesion risk. The observed patterns of associations suggest that MMA% and DMA% have distinct genetic determinants and support the hypothesis that DMA is the less toxic of these two methylated arsenic species. These results have potential translational implications for the prevention and treatment of arsenic-associated toxicities worldwide

    Efficacy of fixed-dose combination artesunate-amodiaquine <it>versus</it> artemether-lumefantrine for uncomplicated childhood <it>Plasmodium falciparum</it> malaria in Democratic Republic of Congo: a randomized non-inferiority trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2005, the Democratic Republic of Congo (DRC) adopted artesunate and amodiaquine (ASAQ) as first-line anti-malarial treatment. In order to compare the efficacy of the fixed-dose formulation ASAQ <it>versus</it> artemether-lumefantrine (AL), a randomized, non-inferiority open-label trial was conducted in Katanga.</p> <p>Methods</p> <p>Children aged six and 59 months with uncomplicated <it>Plasmodium falciparum</it> malaria were enrolled and randomly allocated into one of the two regimens. The risk of recurrent parasitaemia by day 42, both unadjusted and adjusted by PCR genotyping to distinguish recrudescence from new infection, was analysed.</p> <p>Results</p> <p>Between April 2008 and March 2009, 301 children were included: 156 with ASAQ and 145 with AL. No early treatment failures were reported. Among the 256 patients followed-up at day 42, 32 patients developed late clinical or parasitological failure (9.9% (13/131) in the ASAQ group and 15.2% (19/125) in the AL group). After PCR correction, cure rates were 98.3% (95%CI, 94.1-99.8) in the ASAQ group and 99.1% (95%CI, 94.9-99.9) in the AL group (difference −0.7%, one sided 95% CI −3.1). Kaplan-Meier PCR-adjusted cure rates were similar. Both treatment regimens were generally well tolerated.</p> <p>Conclusion</p> <p>Both ASAQ and AL are highly effective and currently adequate as the first-line treatment of uncomplicated <it>falciparum</it> malaria in this area of Katanga, DRC. However, in a very large country, such as DRC, and because of possible emergence of resistance from other endemic regions, surveillance of efficacy of artemisinin-based combination treatments, including other evaluations of the resistance of ASAQ, need to be done in other provinces.</p> <p>Trial registration</p> <p>The protocol was registered with the clinicaltrials.gov, open clinical trial registry under the identifier number NCT01567423.</p

    In vivo assessments to detect antimalarial resistance

    No full text
    In vivo drug clinical trials are the gold standard for assessing the therapeutic efficacy of antimalarials. They must be conducted in a rigorous and standardized manner so that the resistance of antimalarial drugs can be compared both in time and in space. This chapter presents the methodology for conducting such clinical studies of antimalarials for the treatment of uncomplicated malaria and describes the logistical difficulties and limitations of this methodology. Finally it highlights the importance of such knowledge in preventing resistance, in prolonging the utility of existing antimalarial drugs, and in ensuring that all individuals and populations suffering from malaria get the right malaria treatment at the right time

    Complex interactions between malaria and malnutrition: a systematic literature review

    Get PDF
    Abstract Background Despite substantial improvement in the control of malaria and decreased prevalence of malnutrition over the past two decades, both conditions remain heavy burdens that cause hundreds of thousands of deaths in children in resource-poor countries every year. Better understanding of the complex interactions between malaria and malnutrition is crucial for optimally targeting interventions where both conditions co-exist. This systematic review aimed to assess the evidence of the interplay between malaria and malnutrition. Methods Database searches were conducted in PubMed, Global Health and Cochrane Libraries and articles published in English, French or Spanish between Jan 1980 and Feb 2018 were accessed and screened. The methodological quality of the included studies was assessed using the Newcastle-Ottawa Scale and the risk of bias across studies was assessed using the GRADE approach. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline were followed. Results Of 2945 articles screened from databases, a total of 33 articles were identified looking at the association between malnutrition and risk of malaria and/or the impact of malnutrition in antimalarial treatment efficacy. Large methodological heterogeneity of studies precluded conducting meaningful aggregated data meta-analysis. Divergent results were reported on the effect of malnutrition on malaria risk. While no consistent association between risk of malaria and acute malnutrition was found, chronic malnutrition was relatively consistently associated with severity of malaria such as high-density parasitemia and anaemia. Furthermore, there is little information on the effect of malnutrition on therapeutic responses to artemisinin combination therapies (ACTs) and their pharmacokinetic properties in malnourished children in published literature. Conclusions The evidence on the effect of malnutrition on malaria risk remains inconclusive. Further analyses using individual patient data could provide an important opportunity to better understand the variability observed in publications by standardising both malaria and nutritional metrics. Our findings highlight the need to improve our understanding of the pharmacodynamics and pharmacokinetics of ACTs in malnourished children. Further clarification on malaria-malnutrition interactions would also serve as a basis for designing future trials and provide an opportunity to optimise antimalarial treatment for this large, vulnerable and neglected population. Trial registration PROSPERO CRD42017056934
    corecore