27 research outputs found

    Diet rapidly and reproducibly alters the human gut microbiome

    Get PDF
    Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut1–5, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles

    The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist

    Get PDF
    Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation

    Clinical features of idiopathic inflammatory polymyopathy in the Hungarian Vizsla

    Get PDF
    Background A retrospective study of the clinicopathological features of presumed and confirmed cases of idiopathic inflammatory polymyopathy in the Hungarian Vizsla dog and guidelines for breeding. Results 369 medical records were reviewed (1992–2013) and 77 Hungarian Vizslas were identified with a case history consistent with idiopathic inflammatory polymyopathy. Inclusion criteria were: group 1 (confirmed diagnosis); histopathology and clinical findings compatible with an inflammatory polymyopathy and group 2 (probable diagnosis); clinical findings compatible with a polymyopathy including dysphagia, sialorrhea, temporal muscle atrophy, elevated serum creatine kinase (CK) activity, and sufficient clinical history to suggest that other neuromuscular disorders could be ruled out. Some group 2 dogs had muscle biopsy, which suggested muscle disease but did not reveal an inflammatory process. The mean age of onset was 2.4 years; male dogs were slightly overrepresented. Common presenting signs were dysphagia, sialorrhea, masticatory muscle atrophy, and regurgitation. Common muscle histopathological findings included degenerative and regenerative changes, with multifocal mononuclear cell infiltration with lymphoplasmacytic myositis of variable severity. A positive response to immunosuppressive treatment supported an immune-mediated aetiology. The mean age at death and survival time were 6.4 and 3.9 years, respectively. Recurrence of clinical signs and aspiration pneumonia were common reasons for euthanasia. Conclusions Diagnosis of Vizsla idiopathic inflammatory polymyopathy can be challenging due to lack of specific tests, however the presence of dysphagia, regurgitation and masticatory muscle atrophy in this breed with negative serological tests for masticatory muscle myositis and myasthenia gravis, along with muscle biopsies suggesting an inflammatory process, support the diagnosis. However, there is an urgent need for a more specific diagnostic test. The average of inbreeding coefficient (CoI) of 16.3% suggests an increased expression of a Dog Leukocyte Antigen Class II haplotype, leading to an increased disease risk. The prognosis remains guarded, as treatment can only manage the disease. Recurrence of clinical signs and perceived poor quality of life are the most common reasons for humane euthanasia.</p

    Partial polymerase gene sequence, phylogeny and RT-PCR diagnostic assay for Datura yellow vein nucleorhabdovirus

    No full text
    Partial (c. 0.25 and 1.1 kb) nucleotide sequences of the L polymerase gene of Datura yellow vein virus (DYVV) were obtained using two sets of degenerate oligonucleotide primers. This is the first sequence information for this virus. Phylogenetic analysis of the conserved L gene sequence with those of other plant rhabdoviruses showed that DYVV is most closely related to Sonchus yellow net virus and confirmed its taxonomic placement in the genus Nucleorhabdovirus. DYVV strains isolated from Datura stramonium and Thungergia alata, respectively, were 97.2 % identical in nucleotide sequence across a 251 nt region of the L gene. DYVV-specific primers were designed and a diagnostic RT-PCR assay developed and validated

    Complete nucleotide sequence of Velvet tobacco mottle virus isolate K1

    No full text
    Velvet tobacco mottle virus (VTMoV) infects the native Australian plant Nicotiana velutina, which is endemic to central Australia. This virus is included in the genus Sobemovirus based on virion morphology and serological relationships. We report here the full genome sequence of VTMoV, attained using a genome-walking strategy with both degenerate and specific primers. This sequence confirms that VTMoV is a sobemovirus, with the same open reading frame (ORF) organisation as other described sobemoviruses. The VTMoV sequence is closest to those sobemoviruses isolated from monocotyledonous plants, although the narrow host range of VTMoV is limited to dicotyledonous plants.K. Arthur, S. Dogra and J. W. Randle
    corecore