3,748 research outputs found

    Exoplanet Catalogues

    Full text link
    One of the most exciting developments in the field of exoplanets has been the progression from 'stamp-collecting' to demography, from discovery to characterisation, from exoplanets to comparative exoplanetology. There is an exhilaration when a prediction is confirmed, a trend is observed, or a new population appears. This transition has been driven by the rise in the sheer number of known exoplanets, which has been rising exponentially for two decades (Mamajek 2016). However, the careful collection, scrutiny and organisation of these exoplanets is necessary for drawing robust, scientific conclusions that are sensitive to the biases and caveats that have gone into their discovery. The purpose of this chapter is to discuss and demonstrate important considerations to keep in mind when examining or constructing a catalogue of exoplanets. First, we introduce the value of exoplanetary catalogues. There are a handful of large, online databases that aggregate the available exoplanet literature and render it digestible and navigable - an ever more complex task with the growing number and diversity of exoplanet discoveries. We compare and contrast three of the most up-to-date general catalogues, including the data and tools that are available. We then describe exoplanet catalogues that were constructed to address specific science questions or exoplanet discovery space. Although we do not attempt to list or summarise all the published lists of exoplanets in the literature in this chapter, we explore the case study of the NASA Kepler mission planet catalogues in some detail. Finally, we lay out some of the best practices to adopt when constructing or utilising an exoplanet catalogue.Comment: 14 pages, 6 figures. Invited review chapter, to appear in "Handbook of Exoplanets", edited by H.J. Deeg and J.A. Belmonte, section editor N. Batalh

    <i>Trypanosoma brucei rhodesiense</i> transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis

    Get PDF
    Sleeping sickness is caused by a species of trypanosome blood parasite that is transmitted by tsetse flies. To understand better how infection with this parasite leads to disease, we provide here the most detailed description yet of the course of infection and disease onset in vervet monkeys. One infected tsetse fly was allowed to feed on each host individual, and in all cases infections were successful. The characteristics of infection and disease were similar in all hosts, but the rate of progression varied considerably. Parasites were first detected in the blood 4-10 days after infection, showing that migration of parasites from the site of fly bite was very rapid. Anaemia was a key feature of disease, with a reduction in the numbers and average size of red blood cells and associated decline in numbers of platelets and white blood cells. One to six weeks after infection, parasites were observed in the cerebrospinal fluid (CSF), indicating that they had moved from the blood into the brain; this was associated with a white cell infiltration. This study shows that fly-transmitted infection in vervets accurately mimics human disease and provides a robust model to understand better how sleeping sickness develops

    Vedolizumab for Treating Moderately to Severely Active Crohn’s Disease After Prior Therapy: An Evidence Review Group Perspective of a NICE Single Technology Appraisal

    Get PDF
    As part of its single technology appraisal process, the National Institute for Health and Care Excellence (NICE) invited the manufacturer of vedolizumab (Takeda UK) to submit evidence of the clinical effectiveness and cost effectiveness of vedolizumab for the treatment of patients with moderate-to-severe, active Crohn’s disease. The School of Health and Related Research (ScHARR) at the University of Sheffield was commissioned as the Evidence Review Group (ERG) and produced a critical review of the evidence of the clinical effectiveness and cost effectiveness of the technology, based upon the company’s submission to NICE. The GEMINI II and III trials formed the main supporting evidence for the intervention. Both studies were phase III, randomised, double-blind, placebo-controlled, multicentre trials designed to evaluate the efficacy and safety of vedolizumab. They included patients who were naĂŻve to tumour necrosis factor alpha antagonist (anti-TNF-α) therapy and patients who had an inadequate response to, loss of response to or intolerance of immunomodulators or anti-TNF-α agents. GEMINI II was designed to evaluate the efficacy and safety of vedolizumab as an induction treatment (dosing at weeks 0 and 2, with assessment at week 6) and maintenance treatment (during weeks 6–52). In contrast, GEMINI III was designed to evaluate the efficacy and safety of vedolizumab as an induction treatment only, with doses at weeks 0, 2 and 6, and assessment at weeks 6 and 10. In the absence of any direct head-to-head, randomised, controlled trials comparing vedolizumab with other relevant biologic therapies (adalimumab and infliximab) for the treatment of moderate-to-severe Crohn’s disease, the company conducted a network meta-analysis, which compared vedolizumab, adalimumab, infliximab and placebo for the outcomes of clinical response, enhanced clinical response, clinical remission and discontinuation due to adverse events. The company model estimated the incremental cost-effectiveness ratio (ICER) for vedolizumab compared with the standard of care (consisting of 5-aminosalicylic acids, corticosteroids and immunosuppressants) to be ÂŁ21,620 per quality-adjusted life-year (QALY) gained within the anti-TNF-α-failure population (which included a confidential patient access scheme for vedolizumab). The ICERs were above ÂŁ30,000 per QALY gained for the mixed intention-to-treat population (including both anti-TNF-α-naĂŻve and anti-TNF-α-failure populations) and in patients who were anti-TNF-α naĂŻve only. The ERG identified a number of limitations that were believed to limit the robustness of the results presented by the company. These limitations could not be addressed by the ERG without major restructuring of the economic model. Therefore, the ERG concluded that the results from the company’s model needed to be interpreted with caution and that it was unclear whether the ICERs would increase or decrease following amendment of the identified structural issues

    Disease-modifying therapies for multiple sclerosis

    Get PDF

    Switching from natalizumab to alemtuzumab in patients with relapsing multiple sclerosis

    Get PDF
    Natalizumab is a disease-modifying therapy (DMT) used in relapsing-remitting multiple sclerosis (RRMS), licenced for use in patients with highly-active disease. It is an α4-integrin receptor antagonist that decreases activated T cell migration across the blood-brain barrier. Natalizumab carries a risk of progressive multifocal leucoencephalopathy (PML)—a risk that increases with duration of treatment; John Cunningham Virus (JCV) seropositivity and higher index values; prior use of immunosuppression. Patients may choose to withdraw from natalizumab to mitigate PML risk, or less commonly when natalizumab fails to control disease activity, or is poorly tolerated. Fingolimod has been commonly used as an option in those making the switch from natalizumab, but is associated with high rates of breakthrough clinical and/or radiological disease activity, although the risks may be lower with shorter washout periods. Rituximab has been suggested as an alternative to fingolimod in patients discontinuing natalizumab due to high PML risk, however, rituximab is not licenced for the treatment of RRMS and is not available in some countries for this indication. Alemtuzumab is a monoclonal antibody that binds to the CD52 surface protein on T and B lymphocytes, resulting in their depletion with subsequent repopulation, with comparable efficacy to natalizumab. Switching to alemtuzumab might be an alternative to fingolimod in patients stopping natalizumab but there is a paucity of clinical and safety data to guide this transition. Here, we present a single-centre experience in switching from natalizumab to alemtuzumab in RRMS

    Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18

    Get PDF
    Background: Rumen microbes metabolize 22:6n-3. However, pathways of 22:6n-3 biohydrogenation and ruminal microbes involved in this process are not known. In this study, we examine the ability of the well-known rumen biohydrogenating bacteria, Butyrivibrio fibrisolvens D1 and Butyrivibrio proteoclasticus P18, to hydrogenate 22:6n-3. Results: Butyrivibrio fibrisolvens D1 failed to hydrogenate 22:6n-3 (0.5 to 32 mu g/mL) in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Growth of B. fibrisolvens was delayed at the higher 22:6n-3 concentrations; however, total volatile fatty acid production was not affected. Butyrivibrio proteoclasticus P18 hydrogenated 22:6n-3 in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Biohydrogenation only started when volatile fatty acid production or growth of B. proteoclasticus P18 had been initiated, which might suggest that growth or metabolic activity is a prerequisite for the metabolism of 22:6n-3. The amount of 22:6n-3 hydrogenated was quantitatively recovered in several intermediate products eluting on the gas chromatogram between 22:6n-3 and 22:0. Formation of neither 22:0 nor 22:6 conjugated fatty acids was observed during 22:6n-3 metabolism. Extensive metabolism was observed at lower initial concentrations of 22:6n-3 (5, 10 and 20 mu g/mL) whereas increasing concentrations of 22:6n-3 (40 and 80 mu g/mL) inhibited its metabolism. Stearic acid formation (18:0) from 18:2n-6 by B. proteoclasticus P18 was retarded, but not completely inhibited, in the presence of 22:6n-3 and this effect was dependent on 22:6n-3 concentration. Conclusions: For the first time, our study identified ruminal bacteria with the ability to hydrogenate 22:6n-3. The gradual appearance of intermediates indicates that biohydrogenation of 22:6n-3 by B. proteoclasticus P18 occurs by pathways of isomerization and hydrogenation resulting in a variety of unsaturated 22 carbon fatty acids. During the simultaneous presence of 18:2n-6 and 22:6n-3, B. proteoclasticus P18 initiated 22:6n-3 metabolism before converting 18:1 isomers into 18:0
    • 

    corecore