22 research outputs found

    Motivated proteins: a web application for studying small three-dimensional protein motifs

    Get PDF
    <b>BACKGROUND:</b> Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are alphabeta-motifs, asx-motifs, asx-turns, beta-bulges, beta-bulge loops, beta-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns.We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. <b>DESCRIPTION:</b> The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. <b>CONCLUSION:</b> Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schem

    MSDmotif: exploring protein sites and motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB) is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure.</p> <p>Results</p> <p>We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS) protocol. An additional entry point facilitates XML requests with XML responses.</p> <p>Conclusion</p> <p>MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures.</p

    Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia

    Get PDF
    Background Preclinical testing of potential therapies for Duchenne muscular dystrophy (DMD) is conducted predominantly of the mdx mouse. But lack of a detailed quantitative description of the pathology of this animal limits our ability to evaluate the effectiveness of putative therapies or their relevance to DMD. Methods Accordingly, we have measured the main cellular components of muscle growth and regeneration over the period of postnatal growth and early pathology in mdx and wild-type (WT) mice; phalloidin binding is used as a measure of fibre size, myonuclear counts and BrdU labelling as records of myogenic activity. Results We confirm a two-phase postnatal growth pattern in WT muscle: first, increase in myonuclear number over weeks 1 to 3, then expansion of myonuclear domain. Mdx muscle growth lags behind that of WT prior to overt signs of pathology. Fibres are smaller, with fewer myonuclei and smaller myonuclear domains. Moreover, satellite cells are more readily detached from mdx than WT muscle fibres. At 3 weeks, mdx muscles enter a phase of florid myonecrosis, accompanied by concurrent regeneration of an intensity that results in complete replacement of pre-existing muscle over the succeeding 3 to 4 weeks. Both WT and mdx muscles attain maximum size by 12 to 14 weeks, mdx muscle fibres being up to 50% larger than those of WT as they become increasingly branched. Mdx muscle fibres also become hypernucleated, containing twice as many myonuclei per sarcoplasmic volume, as those of WT, the excess corresponding to the number of centrally placed myonuclei. Conclusions The best-known consequence of lack of dystrophin that is common to DMD and the mdx mouse is the conspicuous necrosis and regeneration of muscle fibres. We present protocols for measuring this in terms both of loss of muscle nuclei previously labelled with BrdU and of the intensity of myonuclear labelling with BrdU administered during the regeneration period. Both measurements can be used to assess the efficacy of putative antinecrotic agents. We also show that lack of dystrophin is associated with a number of previously unsuspected abnormalities of muscle fibre structure and function that do not appear to be directly associated with myonecrosis

    Bacillus anthracis Peptidoglycan Stimulates an Inflammatory Response in Monocytes through the p38 Mitogen-Activated Protein Kinase Pathway

    Get PDF
    We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis

    B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The etiology of the neurogenerative disease multiple sclerosis (MS) is unknown. The leading hypotheses suggest that MS is the result of exposure of genetically susceptible individuals to certain environmental factor(s). Herpesviruses and human endogenous retroviruses (HERVs) represent potentially important factors in MS development. Herpesviruses can activate HERVs, and HERVs are activated in MS patients.</p> <p>Results</p> <p>Using flow cytometry, we have analyzed HERV-H Env and HERV-W Env epitope expression on the surface of PBMCs from MS patients with active and stable disease, and from control individuals. We have also analyzed serum antibody levels to the expressed HERV-H and HERV-W Env epitopes. We found a significantly higher expression of HERV-H and HERV-W Env epitopes on B cells and monocytes from patients with active MS compared with patients with stable MS or control individuals. Furthermore, patients with active disease had relatively higher numbers of B cells in the PBMC population, and higher antibody reactivities towards HERV-H Env and HERV-W Env epitopes. The higher antibody reactivities in sera from patients with active MS correlate with the higher levels of HERV-H Env and HERV-W Env expression on B cells and monocytes. We did not find such correlations for stable MS patients or for controls.</p> <p>Conclusion</p> <p>These findings indicate that both HERV-H Env and HERV-W Env are expressed in higher quantities on the surface of B cells and monocytes in patients with active MS, and that the expression of these proteins may be associated with exacerbation of the disease.</p

    Recurring main-chain anion-binding motifs in short polypeptides: nests

    No full text
    corecore