22 research outputs found

    Biomedical informatics and translational medicine

    Get PDF
    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams

    The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability

    Get PDF
    BACKGROUND: The Cell Ontology (CL) is an OBO Foundry candidate ontology covering the domain of canonical, natural biological cell types. Since its inception in 2005, the CL has undergone multiple rounds of revision and expansion, most notably in its representation of hematopoietic cells. For in vivo cells, the CL focuses on vertebrates but provides general classes that can be used for other metazoans, which can be subtyped in species-specific ontologies. CONSTRUCTION AND CONTENT: Recent work on the CL has focused on extending the representation of various cell types, and developing new modules in the CL itself, and in related ontologies in coordination with the CL. For example, the Kidney and Urinary Pathway Ontology was used as a template to populate the CL with additional cell types. In addition, subtypes of the class ‘cell in vitro’ have received improved definitions and labels to provide for modularity with the representation of cells in the Cell Line Ontology and Reagent Ontology. Recent changes in the ontology development methodology for CL include a switch from OBO to OWL for the primary encoding of the ontology, and an increasing reliance on logical definitions for improved reasoning. UTILITY AND DISCUSSION: The CL is now mandated as a metadata standard for large functional genomics and transcriptomics projects, and is used extensively for annotation, querying, and analyses of cell type specific data in sequencing consortia such as FANTOM5 and ENCODE, as well as for the NIAID ImmPort database and the Cell Image Library. The CL is also a vital component used in the modular construction of other biomedical ontologies—for example, the Gene Ontology and the cross-species anatomy ontology, Uberon, use CL to support the consistent representation of cell types across different levels of anatomical granularity, such as tissues and organs. CONCLUSIONS: The ongoing improvements to the CL make it a valuable resource to both the OBO Foundry community and the wider scientific community, and we continue to experience increased interest in the CL both among developers and within the user community

    Cell Cycle Ontology (CCO)

    No full text

    The NIDDK Information Network: A Community Portal for Finding Data, Materials, and Tools for Researchers Studying Diabetes, Digestive, and Kidney Diseases

    No full text
    The NIDDK Information Network (dkNET; http://dknet.org) was launched to serve the needs of basic and clinical investigators in metabolic, digestive and kidney disease by facilitating access to research resources that advance the mission of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). By research resources, we mean the multitude of data, software tools, materials, services, projects and organizations available to researchers in the public domain. Most of these are accessed via web-accessible databases or web portals, each developed, designed and maintained by numerous different projects, organizations and individuals. While many of the large government funded databases, maintained by agencies such as European Bioinformatics Institute and the National Center for Biotechnology Information, are well known to researchers, many more that have been developed by and for the biomedical research community are unknown or underutilized. At least part of the problem is the nature of dynamic databases, which are considered part of the "hidden" web, that is, content that is not easily accessed by search engines. dkNET was created specifically to address the challenge of connecting researchers to research resources via these types of community databases and web portals. dkNET functions as a "search engine for data", searching across millions of database records contained in hundreds of biomedical databases developed and maintained by independent projects around the world. A primary focus of dkNET are centers and projects specifically created to provide high quality data and resources to NIDDK researchers. Through the novel data ingest process used in dkNET, additional data sources can easily be incorporated, allowing it to scale with the growth of digital data and the needs of the dkNET community. Here, we provide an overview of the dkNET portal and its functions. We show how dkNET can be used to address a variety of use cases that involve searching for research resources
    corecore