64 research outputs found

    Sodium channel-inhibiting drugs and survival of breast, colon and prostate cancer: a population-based study

    Get PDF
    Metastasis is the leading cause of cancer-related deaths. Voltage-gated sodium channels (VGSCs) regulate invasion and metastasis. Several VGSC-inhibiting drugs reduce metastasis in murine cancer models. We aimed to test the hypothesis that patients taking VGSC-inhibiting drugs who developed cancer live longer than those not taking these drugs. A cohort study was performed on primary care data from the QResearch database, including patients with breast, bowel or prostate cancer. Cox proportional hazards regression was used to compare the survival from cancer diagnosis of patients taking VGSC-inhibiting drugs with those not exposed to these drugs. Median time to death was 9.7 years in the exposed group and 18.4 years in the unexposed group, and exposure to these medications significantly increased mortality. Thus, exposure to VGSC-inhibiting drugs associates with reduced survival in breast, bowel and prostate cancer patients. This finding is not consistent with the preclinical data. Despite the strengths of this study including the large sample size, the study is limited by missing information on potentially important confounders such as cancer stage, co-morbidities and cause of death. Further research, which is able to account for these confounding issues, is needed to investigate the relationship between VGSC-inhibiting drugs and cancer survival

    Voltage-gated Na<sup>+</sup> channel activity increases colon cancertranscriptional activity and invasion via persistent MAPK signaling

    Get PDF
    © 2015 Macmillan Publishers Limited. All rights reserved. Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes

    Alternative Splicing of the Cardiac Sodium Channel Creates Multiple Variants of Mutant T1620K Channels

    Get PDF
    Alternative splicing creates several Nav1.5 transcripts in the mammalian myocardium and in various other tissues including brain, dorsal root ganglia, breast cancer cells as well as neuronal stem cell lines. In total nine Nav1.5 splice variants have been discovered. Four of them, namely Nav1.5a, Nav1.5c, Nav1.5d, and Nav1.5e, generate functional channels in heterologous expression systems. The significance of alternatively spliced transcripts for cardiac excitation, in particular their role in SCN5A channelopathies, is less well understood. In the present study, we systematically investigated electrophysiological properties of mutant T1620K channels in the background of all known functional Nav1.5 splice variants in HEK293 cells. This mutation has been previously associated with two distinct cardiac excitation disorders: with long QT syndrome type 3 (LQT3) and isolated cardiac conduction disease (CCD). When investigating the effect of the T1620K mutation, we noticed similar channel defects in the background of hNav1.5, hNav1.5a, and hNav1.5c. In contrast, the hNav1.5d background produced differential effects: In the mutant channel, some gain-of-function features did not emerge, whereas loss-of-function became more pronounced. In case of hNav1.5e, the neonatal variant of hNav1.5, both the splice variant itself as well as the corresponding mutant channel showed electrophysiological properties that were distinct from the wild-type and mutant reference channels, hNav1.5 and T1620K, respectively. In conclusion, our data show that alternative splicing is a mechanism capable of generating a variety of functionally distinct wild-type and mutant hNav1.5 channels. Thus, the cellular splicing machinery is a potential player affecting genotype-phenotype correlations in SCN5A channelopathies

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF

    SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

    Full text link

    Therapeutic potential for phenytoin : targeting Nav1.5 sodium channels to reduce migration and invasion in metastatic breast cancer

    Get PDF
    Voltage-gated Na(+) channels (VGSCs) are heteromeric membrane protein complexes containing pore-forming α subunits and smaller, non-pore-forming β subunits. VGSCs are classically expressed in excitable cells, including neurons and muscle cells, where they mediate action potential firing, neurite outgrowth, pathfinding, and migration. VGSCs are also expressed in metastatic cells from a number of cancers. The Na(v)1.5 α subunit (encoded by SCN5A) is expressed in breast cancer (BCa) cell lines, where it enhances migration and invasion. We studied the expression of SCN5A in BCa array data, and tested the effect of the VGSC-blocking anticonvulsant phenytoin (5,5-diphenylhydantoin) on Na(+) current, migration, and invasion in BCa cells. SCN5A was up-regulated in BCa samples in several datasets, and was more highly expressed in samples from patients who had a recurrence, metastasis, or died within 5 years. SCN5A was also overexpressed as an outlier in a subset of samples, and associated with increased odds of developing metastasis. Phenytoin inhibited transient and persistent Na(+) current recorded from strongly metastatic MDA-MB-231 cells, and this effect was more potent at depolarized holding voltages. It may thus be an effective VGSC-blocking drug in cancer cells, which typically have depolarized membrane potentials. At a concentration within the therapeutic range used to treat epilepsy, phenytoin significantly inhibited the migration and invasion of MDA-MB-231 cells, but had no effect on weakly metastatic MCF-7 cells, which do not express Na(+) currents. We conclude that phenytoin suppresses Na(+) current in VGSC-expressing metastatic BCa cells, thus inhibiting VGSC-dependent migration and invasion. Together, our data support the hypothesis that SCN5A is up-regulated in BCa, favoring an invasive/metastatic phenotype. We therefore propose that repurposing existing VGSC-blocking therapeutic drugs should be further investigated as a potential new strategy to improve patient outcomes in metastatic BCa

    High-Throughput, Low-Loss, Low-Cost and Label-Free Cell Separation using Electrophysiology Activated Cell Enrichment (EPACE)

    No full text
    Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whilst the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation) and cost. The system was evaluated using three example separations; live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells/second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 minutes, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells/second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells, whilst maintaining a processing rate of ~170,000 cells/second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where GMP compatibility is of paramount importance. Significance statement. Cell separation is a fundamental process in biomedicine, but is presently complicated, cumbersome and expensive. We present a technique that can sort cells at a rate equivalent to or faster than gold-standard techniques such as FACS and MACs, but can do label-free and with very low cell loss. The system uses dielectrophoresis (DEP) to sort cells electrostatically, using a novel electrode chip that eschews microfabrication in favour of a laminate drilled with 397 electrode-bearing wells. This high level of parallelisation makes the system immune to the bubbles that limit labs-on-chip, whilst also increasing capacity and throughput to unprecedented levels, whilst the chip is cheap enough to be disposable, preventing inter-separation contamination
    corecore