10,294 research outputs found
Effects of carbon fibers on consumer products
The potential effects of carbon fibers on consumer products such as dishwashers, microwave ovens, and smoke detectors were investigated. The investigation was divided into two categories to determine the potential faults and hazards that could occur if fibers should enter the electrical circuits of the selected appliances. The categories were a fault analysis and a hazard analysis. Hazards considered were fire, flood, physical harm, explosion, and electrical shock. Electrical shock was found to be a possible occurrence related to carbon fibers. Faults were considered to be any effect on the performance of an appliance which would result in complaint or require service action
The geometric role of symmetry breaking in gravity
In gravity, breaking symmetry from a group G to a group H plays the role of
describing geometry in relation to the geometry the homogeneous space G/H. The
deep reason for this is Cartan's "method of equivalence," giving, in
particular, an exact correspondence between metrics and Cartan connections. I
argue that broken symmetry is thus implicit in any gravity theory, for purely
geometric reasons. As an application, I explain how this kind of thinking gives
a new approach to Hamiltonian gravity in which an observer field spontaneously
breaks Lorentz symmetry and gives a Cartan connection on space.Comment: 4 pages. Contribution written for proceedings of the conference
"Loops 11" (Madrid, May 2011
Quasi-isometric classification of non-geometric 3-manifold groups
We describe the quasi-isometric classification of fundamental groups of
irreducible non-geometric 3-manifolds which do not have "too many" arithmetic
hyperbolic geometric components, thus completing the quasi-isometric
classification of 3--manifold groups in all but a few exceptional cases.Comment: Minor revision (added footnote in the Introduction
Gravity from a fermionic condensate of a gauge theory
The most prominent realization of gravity as a gauge theory similar to the
gauge theories of the standard model comes from enlarging the gauge group from
the Lorentz group to the de Sitter group. To regain ordinary Einstein-Cartan
gravity the symmetry must be broken, which can be accomplished by known
quasi-dynamic mechanisms. Motivated by symmetry breaking models in particle
physics and condensed matter systems, we propose that the symmetry can
naturally be broken by a homogenous and isotropic fermionic condensate of
ordinary spinors. We demonstrate that the condensate is compatible with the
Einstein-Cartan equations and can be imposed in a fully de Sitter invariant
manner. This lends support, and provides a physically realistic mechanism for
understanding gravity as a gauge theory with a spontaneously broken local de
Sitter symmetry.Comment: 16 page
A smart end-effector for assembly of space truss structures
A unique facility, the Automated Structures Research Laboratory, is being used to investigate robotic assembly of truss structures. A special-purpose end-effector is used to assemble structural elements into an eight meter diameter structure. To expand the capabilities of the facility to include construction of structures with curved surfaces from straight structural elements of different lengths, a new end-effector has been designed and fabricated. This end-effector contains an integrated microprocessor to monitor actuator operations through sensor feedback. This paper provides an overview of the automated assembly tasks required by this end-effector and a description of the new end-effector's hardware and control software
The Detectability of AGN Cavities in Cooling-Flow Clusters
Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling
flow clusters. The cavities trace feedback from the central active galactic
nulceus (AGN) on the intracluster medium (ICM), an important ingredient in
stabilizing cooling flows and in the process of galaxy formation and evolution.
But, the prevalence and duty cycle of such AGN outbursts is not well
understood. To this end, we study how the cooling is balanced by the cavity
heating for a complete sample of clusters (the Brightest 55 clusters of
galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of
which have detected X-ray bubbles in their ICM. Among the remaining 13, all
except Ophiuchus could have significant cavity power yet remain undetected in
existing images. This implies that the duty cycle of AGN outbursts with
significant heating potential in cooling flow clusters is at least 60 % and
could approach 100 %, but deeper data is required to constrain this further.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Monsters'
Fiery Breath", Madison, Wisconsin 1-5 June 2009, Eds. Sebastian Heinz & Eric
Wilcots; added annotation to the figur
Chandra Observation of the Radio Source / X-ray Gas Interaction in the Cooling Flow Cluster Abell 2052
We present a Chandra observation of Abell 2052, a cooling flow cluster with a
central cD that hosts the complex radio source 3C 317. The data reveal
``holes'' in the X-ray emission that are coincident with the radio lobes. The
holes are surrounded by bright ``shells'' of X-ray emission. The data are
consistent with the radio source displacing and compressing, and at the same
time being confined by, the X-ray gas. The compression of the X-ray shells
appears to have been relatively gentle and, at most, slightly transonic. The
pressure in the X-ray gas (the shells and surrounding cooler gas) is
approximately an order of magnitude higher than the minimum pressure derived
for the radio source, suggesting that an additional source of pressure is
needed to support the radio plasma. The compression of the X-ray shells has
speeded up the cooling of the shells, and optical emission line filaments are
found coincident with the brightest regions of the shells.Comment: accepted for publication in ApJ Letters; for high-resolution color
figures, see http://www.astro.virginia.edu/~elb6n/abell2052.htm
- …