11,189 research outputs found
Side-jumps in the spin-Hall effect: construction of the Boltzmann collision integral
We present a systematic derivation of the side-jump contribution to the
spin-Hall current in systems without band structure spin-orbit interactions,
focusing on the construction of the collision integral for the Boltzmann
equation. Starting from the quantum Liouville equation for the density operator
we derive an equation describing the dynamics of the density matrix in the
first Born approximation and to first order in the driving electric field.
Elastic scattering requires conservation of the total energy, including the
spin-orbit interaction energy with the electric field: this results in a first
correction to the customary collision integral found in the Born approximation.
A second correction is due to the change in the carrier position during
collisions. It stems from the part of the density matrix off-diagonal in wave
vector. The two corrections to the collision integral add up and are
responsible for the total side-jump contribution to the spin-Hall current. The
spin-orbit-induced correction to the velocity operator also contains terms
diagonal and off-diagonal in momentum space, which together involve the total
force acting on the system. This force is explicitly shown to vanish (on the
average) in the steady state: thus the total contribution to the spin-Hall
current due to the additional terms in the velocity operator is zero.Comment: Added references, expanded discussion, revised introductio
Anomalous Rashba spin splitting in two-dimensional hole systems
It has long been assumed that the inversion asymmetry-induced Rashba spin
splitting in two-dimensional (2D) systems at zero magnetic field is
proportional to the electric field that characterizes the inversion asymmetry
of the confining potential. Here we demonstrate, both theoretically and
experimentally, that 2D heavy hole systems in accumulation layer-like single
heterostructures show the opposite behavior, i.e., a decreasing, but nonzero
electric field results in an increasing Rashba coefficient.Comment: 4 pages, 3 figure
Spin relaxation in an InAs quantum dot in the presence of terahertz driving fields
The spin relaxation in a 1D InAs quantum dot with the Rashba spin-orbit
coupling under driving THz magnetic fields is investigated by developing the
kinetic equation with the help of the Floquet-Markov theory, which is
generalized to the system with the spin-orbit coupling, to include both the
strong driving field and the electron-phonon scattering. The spin relaxation
time can be effectively prolonged or shortened by the terahertz magnetic field
depending on the frequency and strength of the terahertz magnetic field. The
effect can be understood as the sideband-modulated spin-phonon scattering. This
offers an additional way to manipulate the spin relaxation time.Comment: 8 pages, 1 figure, to be published in PR
SU(3) Spin-Orbit Coupling in Systems of Ultracold Atoms
Motivated by the recent experimental success in realizing synthetic
spin-orbit coupling in ultracold atomic systems, we consider N-component atoms
coupled to a non-Abelian SU(N) gauge field. More specifically, we focus on the
case, referred to here as "SU(3) spin-orbit-coupling," where the internal
states of three-component atoms are coupled to their momenta via a matrix
structure that involves the Gell-Mann matrices (in contrast to the Pauli
matrices in conventional SU(2) spin-orbit-coupled systems). It is shown that
the SU(3) spin-orbit-coupling gives rise to qualitatively different phenomena
and in particular we find that even a homogeneous SU(3) field on a simple
square lattice enables a topologically non-trivial state to exist, while such
SU(2) systems always have trivial topology. In deriving this result, we first
establish an exact equivalence between the Hofstadter model with a 1/N Abelian
flux per plaquette and a homogeneous SU(N) non-Abelian model. The former is
known to have a topological spectrum for N>2, which is thus inherited by the
latter. It is explicitly verified by an exact calculation for N=3, where we
develop and use a new algebraic method to calculate topological indices in the
SU(3) case. Finally, we consider a strip geometry and establish the existence
of three gapless edge states -- the hallmark feature of such an SU(3)
topological insulator.Comment: 4.2 pages, 1 figur
Electron spin orientation under in-plane optical excitation in GaAs quantum wells
We study the optical orientation of electron spins in GaAs/AlGaAs quantum
wells for excitation in the growth direction and for in-plane excitation. Time-
and polarization-resolved photoluminescence excitation measurements show, for
resonant excitation of the heavy-hole conduction band transition, a negligible
degree of electron spin polarization for in-plane excitation and nearly 100%
for excitation in the growth direction. For resonant excitation of the
light-hole conduction band transition, the excited electron spin polarization
has the same (opposite) direction for in-plane excitation (in the growth
direction) as for excitation into the continuum. The experimental results are
well explained by an accurate multiband theory of excitonic absorption taking
fully into account electron-hole Coulomb correlations and heavy-hole light-hole
coupling.Comment: 10 pages, 4 figures, final versio
Anomalous magneto-oscillations in two-dimensional systems
The frequencies of Shubnikov-de Haas oscillations have long been used to
measure the unequal population of spin-split two-dimensional subbands in
inversion asymmetric systems. We report self-consistent numerical calculations
and experimental results which indicate that these oscillations are not simply
related to the zero-magnetic-field spin-subband densities.Comment: 4 pages, 3 figures; changed content (clarifications
Lande-like formula for the g factors of hole-nanowire subband edges
We have analyzed theoretically the Zeeman splitting of hole-quantum-wire
subband edges. As is typical for any bound state, their g factor depends on
both an intrinsic g factor of the material and an additional contribution
arising from a finite bound-state orbital angular momentum. We discuss the
quantum-confinement-induced interplay between bulk-material and orbital
effects, which is nontrivial due to the presence of strong spin-orbit coupling.
A compact analytical formula is provided that elucidates this interplay and can
be useful for predicting Zeeman splitting in generic hole-wire geometries.Comment: 4 pages, 2 figure
The Effect of Spin Splitting on the Metallic Behavior of a Two-Dimensional System
Experiments on a constant-density two-dimensional hole system in a GaAs
quantum well reveal that the metallic behavior observed in the
zero-magnetic-field temperature dependence of the resistivity depends on the
symmetry of the confinement potential and the resulting spin-splitting of the
valence band
- …