413 research outputs found

    Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age

    Get PDF
    In advanced age, some individuals maintain a stable cognitive trajectory while others experience a rapid decline. Such variation in cognitive trajectory is only partially explained by traditional neurodegenerative pathologies. Hence, to identify new processes underlying variation in cognitive trajectory, we perform an unbiased proteome-wide association study of cognitive trajectory in a discovery (n = 104) and replication cohort (n = 39) of initially cognitively unimpaired, longitudinally assessed older-adult brain donors. We find 579 proteins associated with cognitive trajectory after meta-analysis. Notably, we present evidence for increased neuronal mitochondrial activities in cognitive stability regardless of the burden of traditional neuropathologies. Furthermore, we provide additional evidence for increased synaptic abundance and decreased inflammation and apoptosis in cognitive stability. Importantly, we nominate proteins associated with cognitive trajectory, particularly the 38 proteins that act independently of neuropathologies and are also hub proteins of protein co-expression networks, as promising targets for future mechanistic studies of cognitive trajectory.Accelerating Medicine Partnership for AD [U01AG046161, U01 AG061357]; Emory Alzheimer's Disease Research Center [P50 AG025688]; NINDS Emory Neuroscience Core [P30 NS055077]; intramural program of the National Institute on Aging (NIA); Alzheimer's Association; Alzheimer's Research UK; Michael J. Fox Foundation for Parkinson's Research; Weston Brain Institute Biomarkers Across Neurodegenerative Diseases Grant [11060]; National Institute of Neurological Disorders and Stroke [U24 NS072026]; National Institute on Aging [P30 AG19610]; Arizona Department of Health Services [211002]; Arizona Biomedical Research Commission [4001, 0011, 05-901, 1001]; [R01 AG056533]; [R01 AG053960]; [U01 MH115484]; [I01 BX003853]; [IK2 BX001820]; [R01 AG061800]; [R01 AG057911]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Effects of APOE Genotype on Brain Proteomic Network and Cell Type Changes in Alzheimer's Disease

    Get PDF
    Polymorphic alleles in the apolipoprotein E (APOE) gene are the main genetic determinants of late-onset Alzheimer's disease (AD) risk. Individuals carrying the APOE E4 allele are at increased risk to develop AD compared to those carrying the more common E3 allele, whereas those carrying the E2 allele are at decreased risk for developing AD. How ApoE isoforms influence risk for AD remains unclear. To help fill this gap in knowledge, we performed a comparative unbiased mass spectrometry-based proteomic analysis of post-mortem brain cortical tissues from pathologically-defined AD or control cases of different APOE genotypes. Control cases (n = 10) were homozygous for the common E3 allele, whereas AD cases (n = 24) were equally distributed among E2/3, E3/3, and E4/4 genotypes. We used differential protein expression and co-expression analytical approaches to assess how changes in the brain proteome are related to APOE genotype. We observed similar levels of amyloid-β, but reduced levels of neurofibrillary tau, in E2/3 brains compared to E3/3 and E4/4 AD brains. Weighted co-expression network analysis revealed 33 modules of co-expressed proteins, 12 of which were significantly different by APOE genotype in AD. The modules that were significantly different by APOE genotype were associated with synaptic transmission and inflammation, among other biological processes. Deconvolution and analysis of brain cell type changes revealed that the E2 allele suppressed homeostatic and disease-associated cell type changes in astrocytes, microglia, oligodendroglia, and endothelia. The E2 allele-specific effect on brain cell type changes was validated in a separate cohort of 130 brains. Our systems-level proteomic analyses of AD brain reveal alterations in the brain proteome and brain cell types associated with allelic variants in APOE, and suggest further areas for investigation into the upstream mechanisms that drive ApoE-associated risk for AD

    Allelic losses on chromosome 3p are accumulated in relation to morphological changes of lung adenocarcinoma

    Get PDF
    We performed allelotyping analysis at nine regions on chromosome 3p using 56 microdissected samples from 23 primary lung adenocarcinomas to examine the process of progression within individual lung adenocarcinoma with various grades of differentiation. Identical allelic patterns among various grades of differentiation were found in eight cases. Accumulation of allelic losses from high to lower differentiated portions was found in seven cases and accumulation of allelic losses from low to higher differentiated portions was found in five cases. Various allelic patterns among various grades of differentiation were found in three cases. These results suggested that allelic losses on 3p play an important role in morphological changes of lung adenocarcinomas. We also investigated the relationship between allelic losses on 3p and histological subtypes of lung adenocarcinoma. The frequencies of allelic losses at 3p14.2 and telomeric region of 3p21.3 were higher in papillary type tumour (nine out of 14, 64% and 11 out of 15, 73%) than in bronchioloalveolar carcinoma-type tumour (one out of 8, 13%; P=0.031 and four out of 12, 33%; P = 0.057). These results indicated that allelic losses at 3p14.2 and telomeric region of 3p21.3 are related to pattern of the proliferation of lung adenocarcinoma

    Aspartic proteinase napsin is a useful marker for diagnosis of primary lung adenocarcinoma

    Get PDF
    Napsin A is an aspartic proteinase expressed in lung and kidney. We have reported that napsin A is expressed in type II pneumocytes and in adenocarcinomas of the lung. The expression of napsin was examined in 118 lung tissues including 16 metastases by in situ hybridisation. Napsin was expressed in the tumour cell compartment in 33 of 39 adenocarcinomas (84.6%), in two of 11 large cell carcinomas and in one lung metastasis of a renal cell carcinoma. Expression of napsin was found to be associated with a high degree of differentiation in adenocarcinoma. Immunohistochemistry was performed for three proteins currently used as markers for lung adenocarcinoma : surfactant protein-A, surfactant protein-B and thyroid transcription factor-1. Thyroid transcription factor-1 showed the same sensitivity (84.6%) as napsin for adenocarcinoma, whereas surfactant protein-A and surfactant protein-B showed lower sensitivities. Among these markers, napsin showed the highest specificity (94.3%) for adenocarcinoma in nonsmall cell lung carcinoma. We conclude that napsin is a promising marker for the diagnosis of primary lung adenocarcinoma

    Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer's disease

    Get PDF
    Alzheimer’s disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes—aggregation of the amyloid-β (Aβ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)—are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of Aβ plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with Aβ plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than Aβ and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with Aβ and tau

    Opioid medication use and blood DNA methylation: epigenome-wide association meta-analysis.

    Get PDF
    This is the final version. Available from Future Medicine via the DOI in this record. Data sharing statement: Complete meta-analysis results can be found at Zenodo 10.5281/zenodo.7545108.Aim: To identify differential methylation related to prescribed opioid use. Methods: This study examined whether blood DNA methylation, measured using Illumina arrays, differs by recent opioid medication use in four population-based cohorts. We meta-analyzed results (282 users; 10,560 nonusers) using inverse-variance weighting. Results: Differential methylation (false discovery rate <0.05) was observed at six CpGs annotated to the following genes: KIAA0226, CPLX2, TDRP, RNF38, TTC23 and GPR179. Integrative epigenomic analyses linked implicated loci to regulatory elements in blood and/or brain. Additionally, 74 CpGs were differentially methylated in males or females. Methylation at significant CpGs correlated with gene expression in blood and/or brain. Conclusion: This study identified DNA methylation related to opioid medication use in general populations. The results could inform the development of blood methylation biomarkers of opioid use.National Institute of Healt

    Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes—aggregation of the amyloid- (A ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)—are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of A plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with A plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than A and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with A and tau
    corecore