18,966 research outputs found

    Kapton charging characteristics: Effects of material thickness and electron-energy distribution

    Get PDF
    Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured

    Cyclical tests of selected space shuttle TPS metallic materials in a plasma arc tunnel Volume 1: Description of tests and program summary

    Get PDF
    Work, concerned with cyclical thermal evaluation of selected space shuttle thermal protection system (TPS) metallic materials in a hypervelocity oxidizing atmosphere that approximated an actual entry environment, is presented. A total of 325 sample test hours were conducted on 21 super-alloy metallic samples at temperatures from 1800 to 2200 F (1256 to 1478 K) without any failures. The 4 x 4 in. (10.2 x 10.2 cm) samples were fabricated from five nickel base alloys and one cobalt base alloy. Eighteen of the samples were cycled 100 times each and the other three samples 50 times each in a test stream emanating from an 8 in. (20.3 cm) diam exit, Mach 4.6, conical nozzle. The test cycle consisted of a 10 min heat pulse to a controlled temperature followed by a 10 min cooldown period. The TD-NiCrAl and TD-NiAlY materials showed the least change in weight, thickness, and physical appearance even though they were subjected to the highest temperature environment

    Cyclical Tests of Selected Space Shuttle TPS Metallic Materials in a Plasma Arc Tunnel. Volume 2: Appendices - Data Tabulation

    Get PDF
    Calibration data are presented for heat flux and pressure profiles, model temperature histories, and model weight and thickness changes

    Predictable hydrodynamic conditions explain temporal variations in the density of benthic foraging seabirds in a tidal stream environment

    Get PDF
    VC International Council for the Exploration of the Sea 2016. James J. Waggitt was funded by a NERC Case studentship supported by OpenHydro Ltd and Marine Scotland Science (NE/J500148/1). Shore-based surveys were funded by a NERC (NE/J004340/1) and a Scottish National Heritage (SNH) grant. FVCOM was funded by a NERC grant (NE/J004316/1). The bathymetry data used in hydrodynamic models (HI 1122 Sanday Sound to Westray Firth) was collected by the Maritime and Coastguard Agency (MCA) as part of the UK Civil Hydrography Programme. We wish to thank Christina Bristow, Matthew Finn and Jennifer Norris at the European Marine Energy Centre (EMEC); Ian Davies at Marine Scotland Science; Gail Davoren, Shaun Fraser, Pauline Goulet, Alex Robbins and Helen Wade for invaluable discussions; Thomas Cornulier, Alex Douglas, James Grecian and Samantha Patrick for their help with statistical analysis; and Jenny Campbell and the Cockram family for assistance during fieldwork.Peer reviewedPublisher PD

    An 8-cm ion thruster characterization

    Get PDF
    The performance of the Ion Auxiliary Propulsion System (IAPS) thruster was increased to thrust T = 32 mN, specific impulse I sub sp = 4062 s, and thrust-to-power ratio T/P = 33 mN/kW. This performance was obtained by increasing the discharge power, accelerating voltage, propellant flow rate, and chamber magnetic field. Adding a plenum and main vaporizer for propellant distribution was the only major change required in the thruster. The modified thruster characterization is presented. A cathode magnet assembly did not improve performance. A simplified power processing unit was designed and evaluated. This unit decreased the parts count of the IAPS power processing unit by a factor of ten

    Electron Emission from Diamondoids: A Diffusion Quantum Monte Carlo Study

    Get PDF
    We present density-functional theory (DFT) and quantum Monte Carlo (QMC) calculations designed to resolve experimental and theoretical controversies over the optical properties of H-terminated C nanoparticles (diamondoids). The QMC results follow the trends of well-converged plane-wave DFT calculations for the size dependence of the optical gap, but they predict gaps that are 1-2 eV higher. They confirm that quantum confinement effects disappear in diamondoids larger than 1 nm, which have gaps below that of bulk diamond. Our QMC calculations predict a small exciton binding energy and a negative electron affinity (NEA) for diamondoids up to 1 nm, resulting from the delocalized nature of the lowest unoccupied molecular orbital. The NEA suggests a range of possible applications of diamondoids as low-voltage electron emitters

    Comparison of two methods for describing the strain profiles in quantum dots

    Full text link
    The electronic structure of interfaces between lattice-mismatched semiconductor is sensitive to the strain. We compare two approaches for calculating such inhomogeneous strain -- continuum elasticity (CE, treated as a finite difference problem) and atomistic elasticity (AE). While for small strain the two methods must agree, for the large strains that exist between lattice-mismatched III-V semiconductors (e.g. 7% for InAs/GaAs outside the linearity regime of CE) there are discrepancies. We compare the strain profile obtained by both approaches (including the approximation of the correct C_2 symmetry by the C_4 symmetry in the CE method), when applied to C_2-symmetric InAs pyramidal dots capped by GaAs.Comment: To appear in J. Appl. Physic

    What can GLAST say about the origin of cosmic rays in other galaxies ?

    Get PDF
    Gamma rays in the band from 20 MeV to 300 GeV, used in combination with data from radio and X-ray bands, provide a powerful tool for studying the origin of cosmic rays in our sister galaxies Andromeda and the Magellanic Clouds. Gamma-ray Large Area Space Telescope (GLAST) will spatially resolve these galaxies and measure the spectrum and intensity of diffuse gamma radiation from the collisions of cosmic rays with gas and dust in them. Observations of Andromeda will give an external perspective on a spiral galaxy like the Milky Way. Observations of the Magellanic Clouds will permit a study of cosmic rays in dwarf irregular galaxies, where the confinement is certainly different and the massive star formation rate is much greater.Comment: 4 pages including 6 figures; to appear in Proc. ACE-2000 Symp. "The Acceleration and Transport of Energetic Particles Observed in the Heliosphere" (Jan. 5-8, 2000, Indian Wells, CA), AIP Conf. Proc. More details can be found at the LHEA GLAST page at http://lhea-glast.gsfc.nasa.gov/pub/science/index.htm

    Meson-exchange Currents and Quasielastic Neutrino Cross Sections

    Get PDF
    We illustrate and discuss the role of meson-exchange currents in quasielastic neutrino-nucleus scattering induced by charged currents, comparing the results with the recent MiniBooNE data for differential and integrated cross sections.Comment: 9 pages, 8 figures; Proceedings of the 30th International Workshop on Nuclear Theory IWNT30, Rila Mountains, Bulgaria, June 27 - July 2, 201
    corecore