10 research outputs found

    Improving nitrogen cycling in a land surface model (CLM5) to quantify soil N2O, NO, and NH3 emissions from enhanced rock weathering with croplands

    Get PDF
    Surficial enhanced rock weathering (ERW) is a land-based carbon dioxide removal (CDR) strategy that involves applying crushed silicate rock (e.g., basalt) to agricultural soils. However, unintended biogeochemical interactions with the nitrogen cycle may arise through ERW increasing soil pH as basalt grains undergo dissolution that may reinforce, counteract, or even offset the climate benefits from carbon sequestration. Increases in soil pH could drive changes in the soil emissions of key non-CO2 greenhouse gases, e.g., nitrous oxide (N2O), and trace gases, e.g., nitric oxide (NO) and ammonia (NH3), that affect air quality and crop and human health. We present the development and implementation of a new improved nitrogen cycling scheme for the Community Land Model v5 (CLM5), the land component of the Community Earth System Model, allowing evaluation of ERW effects on soil gas emissions. We base the new parameterizations on datasets derived from soil pH responses of N2O, NO, and NH3 in ERW field trial and mesocosm experiments with crushed basalt. These new capabilities involve the direct implementation of routines within the CLM5 N cycle framework, along with asynchronous coupling of soil pH changes estimated through an ERW model. We successfully validated simulated “control” (i.e., no ERW) seasonal cycles of soil N2O, NO, and NH3 emissions against a wide range of global emission inventories. We benchmark simulated mitigation of soil N2O fluxes in response to ERW against a subset of data from ERW field trials in the US Corn Belt. Using the new scheme, we provide a specific example of the effect of large-scale ERW deployment with croplands on soil nitrogen fluxes across five key regions with high potential for CDR with ERW (North America, Brazil, Europe, India, and China). Across these regions, ERW implementation led to marked reductions in N2O and NO (both 18 %), with moderate increases in NH3 (2 %). While further developments are still required in our implementations when additional ERW data become available, our improved N cycle scheme within CLM5 has utility for investigating the potential of ERW point-source and regional effects of soil N2O, NO, and NH3 fluxes in response to current and future climates. This framework also provides the basis for assessing the implications of ERW for air quality given the role of NO in tropospheric ozone formation, as well as both NO and NH3 in inorganic aerosol formation

    Entwicklung einer 1 mum Bipolartechnik Schlussbericht

    No full text
    With 14 refs., 85 figs.SIGLETIB: FR 866 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    A test of the hierarchical model of litter decomposition

    No full text
    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle–climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France—and capturing both within and among site variation in putative controls—we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models

    Alien plant invasion hotspots and invasion debt in European woodlands

    No full text
    [Questions] European woodlands harbor at least 386 alien plant species but the factors driving local invasions remain unknown. By using a large vegetation-plot database, we asked how local richness and abundance of alien species vary by regions, elevation, climate, soil properties, human disturbance, and habitat types.[Location] Western, central and southern Europe.[Methods] We linked consolidated data from the European Vegetation Archive (16,211 plots) to a habitat classification scheme, climate, soil properties and human disturbance variables. In addition, we used 250 km × 250 km regional grid cells to test whether local patterns differ among regions. We used generalized additive models (GAMs) and quantile GAMs to explore how relative alien species richness and the sum of alien species covers per plot relate to predictors. Random Forest analyses (RFs) were employed to assess the importance of individual predictors that were not multicollinear.[Results] Relative alien species richness and the sum of alien species covers varied across regions and habitat types, with effects being more pronounced at the maximum rather than average responses. Both response variables declined with increasing elevation and distance to the nearest road or railroad and increased with the amount of sealed soil. Maxima in fitted functions matched plots from regional invasion hotspots in northwestern and central Europe. RFs accounted for 39.6% and 20.9% of the total variation in relative alien species richness and the sum of alien species covers, respectively, with region and habitat being the most important variables.[Conclusions] The importance of maximum response quantiles and the prevalence of regional hotspots point to invasion debt in European woodlands. As alien plants expand further, their species richness and abundance in woodlands will be likely driven by the shared effects of the introduction and planting history, differences in the invaded habitat types, and dispersal corridors.VW initiated this study as a part of the InvasEVe project financed by the SoMoPro II program and considers it as part of her Discovery Grant from the Canadian Natural Science and Engineering Research Council. VW's research leading to these results has acquired a financial grant from the People Program (Marie Curie Action) of the Seventh Framework Program of the EU according to REA Grant Agreement No. 291782, and it was further co-financed by the South-Moravian Region. MV and MC were supported by the Czech Science Foundation (19-28491X). PP and JP were supported by the Czech Science Foundation (19-28807X) and the Czech Academy of Sciences (RVO 67985939). JCS considers this work a contribution to his VILLUM Investigator project “Biodiversity Dynamics in a Changing World” funded by VILLUM FONDEN (grant 16549). IB and JAC were funded by the Basque Government (IT936-16). FFG was funded by the Plan Propio of the UCLM (2020-GRIN-29214)Peer reviewe

    The long journey to the laser and its rapid development after 1960

    No full text

    Information in United States Patents on works related to ‘Natural Fibers’: 2000-2018

    No full text
    corecore