6 research outputs found

    Moisture-driven divergence in mineral-associated soil carbon persistence

    No full text
    Mineral stabilization of soil organic matter is an important regulator of the global carbon (C) cycle. However, the vulnerability of mineral-stabilized organic matter (OM) to climate change is currently unknown. We examined soil profiles from 34 sites across the conterminous USA to investigate how the abundance and persistence of mineral-associated organic C varied with climate at the continental scale. Using a novel combination of radiocarbon and molecular composition measurements, we show that the relationship between the abundance and persistence of mineral-associated organic matter (MAOM) appears to be driven by moisture availability. In wetter climates where precipitation exceeds evapotranspiration, excess moisture leads to deeper and more prolonged periods of wetness, creating conditions which favor greater root abundance and also allow for greater diffusion and interaction of inputs with MAOM. In these humid soils, mineral- associated soil organic C concentration and persistence are strongly linked, whereas this relationship is absent in drier climates. In arid soils, root abundance is lower, and interaction of inputs with mineral surfaces is limited by shallower and briefer periods of moisture, resulting in a disconnect between concentration and persistence. Data suggest a tipping point in the cycling of mineral-associated C at a climate threshold where precipitation equals evaporation. As climate patterns shift, our findings emphasize that divergence in the mechanisms of OM persistence associated with historical climate legacies need to be considered in process-based models

    Biological and Environmental Research Exascale Requirements Review

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.2172/1375720An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Biological and Environmental Research, March 28-31, 2016, Rockville, MarylandUnderstanding the fundamentals of genomic systems or the processes governing impactful weather patterns are examples of the types of simulation and modeling performed on the most advanced computing resources in America. High-performance computing and computational science together provide a necessary platform for the mission science conducted by the Biological and Environmental Research (BER) office at the U.S. Department of Energy (DOE). This report reviews BER’s computing needs and their importance for solving some of the toughest problems in BER’s portfolio. BER’s impact on science has been transformative. Mapping the human genome, including the U.S.-supported international Human Genome Project that DOE began in 1987, initiated the era of modern biotechnology and genomics-based systems biology. And since the 1950s, BER has been a core contributor to atmospheric, environmental, and climate science research, beginning with atmospheric circulation studies that were the forerunners of modern Earth system models (ESMs) and by pioneering the implementation of climate codes onto high-performance computers. See http://exascaleage.org/ber/ for more information.USDOE Office of Science (SC), Advanced Scientific Computing Research (SC-21)USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23
    corecore