1,566 research outputs found
Target Fragmentation in Semi-Inclusive DIS: Fracture Functions, Cut Vertices and the OPE
We discuss semi-inclusive Deep Inelastic Scattering (DIS) in the z -> 1
limit, in particular the relationship between fracture functions, generalised
cut vertices and Green functions of the composite operators arising in the OPE.
The implications, in the spin-polarised case, for testing whether the "proton
spin" effect is target-independent are explored. Explicit calculations in
(phi^3)_6 theory are presented which are consistent with our observations.Comment: 22 pages, 25 figures, LaTeX 2e; uses graphics packag
A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths
We report on the design, fabrication and characterization of a single-mode W-type lead silicate glass fibre with flattened and near-zero dispersion profile at telecom wavelengths and high nonlinearity of 820 W-1km-1 at 1.55 µm
DMRG studies of the effect of constraint release on the viscosity of polymer melts
The scaling of the viscosity of polymer melts is investigated with regard to
the molecular weight. We present a generalization of the Rubinstein-Duke model,
which takes constraint releases into account and calculate the effects on the
viscosity by the use of the Density Matrix Renormalization Group (DMRG)
algorithm. Using input from Rouse theory the rates for the constraint release
are determined in a self consistent way. We conclude that shape fluctuations of
the tube caused by constraint release are not a likely candidate for improving
Doi's crossover theory for the scaling of the polymer viscosity.Comment: 6 pages, 8 figure
Hybridization-induced superconductivity from the electron repulsion on a tetramer lattice having a disconnected Fermi surface
Plaquette lattices with each unit cell containing multiple atoms are good
candidates for disconnected Fermi surfaces, which are shown by Kuroki and Arita
to be favorable for spin-flucutation mediated superconductivity from electron
repulsion. Here we find an interesting example in a tetramer lattice where the
structure within each unit cell dominates the nodal structure of the gap
function. We trace its reason to the way in which a Cooper pair is formed
across the hybridized molecular orbitals, where we still end up with a T_c much
higher than usual.Comment: 4 pages, 6 figure
A step towards testing general relativity using weak gravitational lensing and redshift surveys
Using the linear theory of perturbations in General Relativity, we express a
set of consistency relations that can be observationally tested with current
and future large scale structure surveys. We then outline a stringent
model-independent program to test gravity on cosmological scales. We illustrate
the feasibility of such a program by jointly using several observables like
peculiar velocities, galaxy clustering and weak gravitational lensing. After
addressing possible observational or astrophysical caveats like galaxy bias and
redshift uncertainties, we forecast in particular how well one can predict the
lensing signal from a cosmic shear survey using an over-lapping galaxy survey.
We finally discuss the specific physics probed this way and illustrate how
gravity models would fail such a test.Comment: 12 pages, 10 figure
Systematic Cu-63 NQR studies of the stripe phase in La(1.6-x)Nd(0.4)Sr(x)CuO(4) for 0.07 <= x <= 0.25
We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole
resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the
charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray
scattering indicates that the wipeout fraction F(T) (i.e. the missing fraction
of the integrated intensity of the NQR signal) represents the charge-stripe
order parameter. The systematic study reveals bulk charge-stripe order
throughout the superconducting region 0.07 <= x <= 0.25. As a function of the
reduced temperature t = T/T(charge), the temperature dependence of F(t) is
sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum
concentration for stripe formation.Comment: 10 pages of text and captions, 11 figures in postscript. Final
version, with new data in Fig.
Superconductivity in quantum-dot superlattices composed of quantum wire networks
Based on calculations using the local density approximation, we propose
quantum wire networks with square and plaquette type lattice structures that
form quantum dot superlattices. These artificial structures are well described
by the Hubbard model. Numerical analysis reveals a superconducting ground state
with transition temperatures of up to 90 mK for the plaquette, which is
more than double the value of 40 mK for the square lattice type and is
sufficiently high to allow for the experimental observation of
superconductivity.Comment: 10 pages, 4 figure
Optical realization of universal quantum cloning
Beyond the no-cloning theorem, the universal symmetric quantum cloning
machine was first addressed by Buzek and Hillery. Here, we realized the
one-to-two qubits Buzek-Hillery cloning machine with linear optical devices.
This method relies on the representation of several qubits by a single photon.
We showed that, the fidelities between the two output qubits and the original
qubit are both 5/6 (which proved to be the optimal fidelity of one-to-two
qubits universal cloner) for arbitrary input pure states.Comment: 5 Pages, 2 Figure
An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles
The extreme solar and SEP event of 20 January 2005 is analyzed from two
perspectives. Firstly, we study features of the main phase of the flare, when
the strongest emissions from microwaves up to 200 MeV gamma-rays were observed.
Secondly, we relate our results to a long-standing controversy on the origin of
SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs.
All emissions from microwaves up to 2.22 MeV line gamma-rays during the main
flare phase originated within a compact structure located just above sunspot
umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed,
indicating the presence of a large number of energetic electrons in strong
magnetic fields. Thus, protons and electrons responsible for flare emissions
during its main phase were accelerated within the magnetic field of the active
region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays
identified with pi^0-decay emission, are similar and correspond in time. The
origin of the pi^0-decay gamma-rays is argued to be the same as that of lower
energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600
km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from
the same active region. Hence, the flare itself rather than the CME appears to
determine the extreme nature of this event. We conclude that the acceleration,
at least, to sub-relativistic energies, of electrons and protons, responsible
for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are
likely to have occurred simultaneously within the flare region. We do not rule
out a probable contribution from particles accelerated in the CME-driven shock
for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo
corrected. The original publication is available at
http://www.springerlink.co
Weak lensing, dark matter and dark energy
Weak gravitational lensing is rapidly becoming one of the principal probes of
dark matter and dark energy in the universe. In this brief review we outline
how weak lensing helps determine the structure of dark matter halos, measure
the expansion rate of the universe, and distinguish between modified gravity
and dark energy explanations for the acceleration of the universe. We also
discuss requirements on the control of systematic errors so that the
systematics do not appreciably degrade the power of weak lensing as a
cosmological probe.Comment: Invited review article for the GRG special issue on gravitational
lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on
three-point function and some references added. Matches the published versio
- …
