42 research outputs found

    The diacylglycerol kinase α/Atypical PKC/β1 integrin pathway in SDF-1α mammary carcinoma invasiveness

    Get PDF
    Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5β1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of β1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and β1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - β1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells

    Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypermethylation of the <it>TGFBI </it>promoter has been shown to correlate with decreased expression of this gene in human tumor cell lines. In this study, we optimized a methylation-specific polymerase chain reaction (MSP) method and investigated the methylation status of the <it>TGFBI </it>promoter in human lung and prostate cancer specimens.</p> <p>Methods</p> <p>Methylation-specific primers were designed based on the methylation profiles of the <it>TGFBI </it>promoter in human tumor cell lines, and MSP conditions were optimized for accurate and efficient amplification. Genomic DNA was isolated from lung tumors and prostatectomy tissues of prostate cancer patients, bisulfite-converted, and analyzed by MSP.</p> <p>Results</p> <p>Among 50 lung cancer samples, 44.0% (22/50) harbored methylated CpG sites in the <it>TGFBI </it>promoter. An analysis correlating gene methylation status with clinicopathological cancer features revealed that dense methylation of the <it>TGFBI </it>promoter was associated with a metastatic phenotype, with 42.9% (6/14) of metastatic lung cancer samples demonstrating dense methylation vs. only 5.6% (2/36) of primary lung cancer samples (<it>p </it>< 0.05). Similar to these lung cancer results, 82.0% (41/50) of prostate cancer samples harbored methylated CpG sites in the <it>TGFBI </it>promoter, and dense methylation of the promoter was present in 38.9% (7/18) of prostate cancer samples with the feature of locoregional invasiveness vs. only 19.4% (6/31) of prostate cancer samples without locoregional invasiveness (<it>p </it>< 0.05). Furthermore, promoter hypermethylation correlated with highly reduced expression of the <it>TGFBI </it>gene in human lung and prostate tumor cell lines.</p> <p>Conclusion</p> <p>We successfully optimized a MSP method for the precise and efficient screening of <it>TGFBI </it>promoter methylation status. Dense methylation of the <it>TGFBI </it>promoter correlated with the extent of <it>TGFBI </it>gene silencing in tumor cell lines and was related to invasiveness of prostate tumors and metastatic status of lung cancer tumors. Thus, <it>TGFBI </it>promoter methylation can be used as a potential prognostic marker for invasiveness and metastasis in prostate and lung cancer patients, respectively.</p

    Low Doses of Ionizing Radiation Promote Tumor Growth and Metastasis by Enhancing Angiogenesis

    Get PDF
    Radiotherapy is a widely used treatment option in cancer. However, recent evidence suggests that doses of ionizing radiation (IR) delivered inside the tumor target volume, during fractionated radiotherapy, can promote tumor invasion and metastasis. Furthermore, the tissues that surround the tumor area are also exposed to low doses of IR that are lower than those delivered inside the tumor mass, because external radiotherapy is delivered to the tumor through multiple radiation beams, in order to prevent damage of organs at risk. The biological effects of these low doses of IR on the healthy tissue surrounding the tumor area, and in particular on the vasculature remain largely to be determined. We found that doses of IR lower or equal to 0.8 Gy enhance endothelial cell migration without impinging on cell proliferation or survival. Moreover, we show that low-dose IR induces a rapid phosphorylation of several endothelial cell proteins, including the Vascular Endothelial Growth Factor (VEGF) Receptor-2 and induces VEGF production in hypoxia mimicking conditions. By activating the VEGF Receptor-2, low-dose IR enhances endothelial cell migration and prevents endothelial cell death promoted by an anti-angiogenic drug, bevacizumab. In addition, we observed that low-dose IR accelerates embryonic angiogenic sprouting during zebrafish development and promotes adult angiogenesis during zebrafish fin regeneration and in the murine Matrigel assay. Using murine experimental models of leukemia and orthotopic breast cancer, we show that low-dose IR promotes tumor growth and metastasis and that these effects were prevented by the administration of a VEGF receptor-tyrosine kinase inhibitor immediately before IR exposure. These findings demonstrate a new mechanism to the understanding of the potential pro-metastatic effect of IR and may provide a new rationale basis to the improvement of current radiotherapy protocols

    DNA methylation-associated inactivation of TGFβ-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers

    Get PDF
    The transforming growth factor β (TGFβ)-signalling pathway is deregulated in many cancers. We examined the role of gene silencing via aberrant methylation of DRM/Gremlin and HPP1, which inhibit TGFβ signalling, and RUNX3, which facilitates TGFβ-signalling, of all genes that are thought to be tumour suppressors, are aberrantly expressed, and are thus thought to have important role in human cancers. We examined DRM/Gremlin mRNA expression in 44 cell lines and the promoter methylation status of DRM/Gremlin, HPP1, and RUNX3 in 44 cell lines and 511 primary tumours. The loss of DRM/Gremlin mRNA expression in human cancer cell lines is associated with DNA methylation, and treatment with the methylation inhibitor-reactivated mRNA expression (n=13). Methylation percentages of the three genes ranged from 0–83% in adult tumours and 0–50% in paediatric tumours. Methylation of DRM/Gremlin was more frequent in lung tumours in smokers, and methylation of all three genes was inversely correlated with prognosis in patients with bladder or prostate cancer. Our results provide strong evidence that these TGFβ-related genes are frequently deregulated through aberrant methylation in many human malignancies

    Off-label psychopharmacologic prescribing for children: History supports close clinical monitoring

    Get PDF
    The review presents pediatric adverse drug events from a historical perspective and focuses on selected safety issues associated with off-label use of medications for the psychiatric treatment of youth. Clinical monitoring procedures for major psychotropic drug classes are reviewed. Prior studies suggest that systematic treatment monitoring is warranted so as to both minimize risk of unexpected adverse events and exposures to ineffective treatments. Clinical trials to establish the efficacy and safety of drugs currently being used off-label in the pediatric population are needed. In the meantime, clinicians should consider the existing evidence-base for these drugs and institute close clinical monitoring

    Generalized processing tree models: Jointly modeling discrete and continuous variables

    Full text link
    Multinomial processing tree models assume that discrete cognitive states determine observed response frequencies. Generalized processing tree (GPT) models extend this conceptual framework to continuous variables such as response times, process-tracing measures, or neurophysiological variables. GPT models assume finite-mixture distributions, with weights determined by a processing tree structure, and continuous components modeled by parameterized distributions such as Gaussians with separate or shared parameters across states. We discuss identifiability, parameter estimation, model testing, a modeling syntax, and the improved precision of GPT estimates. Finally, a GPT version of the feature comparison model of semantic categorization is applied to computer-mouse trajectories
    corecore