121 research outputs found

    Gene polymorphisms in association with emerging cardiovascular risk markers in adult women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence on the associations of emerging cardiovascular disease risk factors/markers with genes may help identify intermediate pathways of disease susceptibility in the general population. This population-based study is aimed to determine the presence of associations between a wide array of genetic variants and emerging cardiovascular risk markers among adult US women.</p> <p>Methods</p> <p>The current analysis was performed among the National Health and Nutrition Examination Survey (NHANES) III phase 2 samples of adult women aged 17 years and older (sample size n = 3409). Fourteen candidate genes within <it>ADRB2, ADRB3, CAT, CRP, F2, F5, FGB, ITGB3, MTHFR, NOS3, PON1, PPARG, TLR4</it>, and <it>TNF </it>were examined for associations with emerging cardiovascular risk markers such as serum C-reactive protein, homocysteine, uric acid, and plasma fibrinogen. Linear regression models were performed using SAS-callable SUDAAN 9.0. The covariates included age, race/ethnicity, education, menopausal status, female hormone use, aspirin use, and lifestyle factors.</p> <p>Results</p> <p>In covariate-adjusted models, serum C-reactive protein concentrations were significantly (P value controlling for false-discovery rate ≀ 0.05) associated with polymorphisms in <it>CRP </it>(rs3093058, rs1205)<it>, MTHFR </it>(rs1801131)<it>, and ADRB3 </it>(rs4994). Serum homocysteine levels were significantly associated with <it>MTHFR </it>(rs1801133).</p> <p>Conclusion</p> <p>The significant associations between certain gene variants with concentration variations in serum C-reactive protein and homocysteine among adult women need to be confirmed in further genetic association studies.</p

    NUCLEAR FACTOR Y, subunit A (NF-YA) proteins positively regulate flowering and act through FLOWERING LOCUS T

    Get PDF
    Photoperiod dependent flowering is one of several mechanisms used by plants to initiate the developmental transition from vegetative growth to reproductive growth. The NUCLEAR FACTOR Y (NF-Y) transcription factors are heterotrimeric complexes composed of NF-YA and histone-fold domain (HFD) containing NF-YB/NF-YC, that initiate photoperiod-dependent flowering by cooperatively interacting with CONSTANS (CO) to drive the expression of FLOWERING LOCUS T (FT). This involves NF-Y and CO binding at distal CCAAT and proximal “CORE” elements, respectively, in the FT promoter. While this is well established for the HFD subunits, there remains some question over the potential role of NF-YA as either positive or negative regulators of this process. Here we provide strong support, in the form of genetic and biochemical analyses, that NF-YA, in complex with NF-YB/NF-YC proteins, can directly bind the distal CCAAT box in the FT promoter and are positive regulators of flowering in an FT-dependent manner.This work was funded by the National Science Foundation (US, http://www.nsf.gov/) award 1149822 to BFH. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Ye

    Biological functions of selenium and its potential influence on Parkinson's disease

    Full text link
    • 

    corecore