23 research outputs found

    Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia

    Get PDF
    Some familial platelet disorders are associated with predisposition to leukemia, myelodysplastic syndrome (MDS) or dyserythropoietic anemia. We identified a family with autosomal dominant thrombocytopenia, high erythrocyte mean corpuscular volume (MCV) and two occurrences of B cell-precursor acute lymphoblastic leukemia (ALL). Whole-exome sequencing identified a heterozygous single-nucleotide change in ETV6 (ets variant 6), c.641C>T, encoding a p.Pro214Leu substitution in the central domain, segregating with thrombocytopenia and elevated MCV. A screen of 23 families with similar phenotypes identified 2 with ETV6 mutations. One family also had a mutation encoding p.Pro214Leu and one individual with ALL. The other family had a c.1252A>G transition producing a p.Arg418Gly substitution in the DNA-binding domain, with alternative splicing and exon skipping. Functional characterization of these mutations showed aberrant cellular localization of mutant and endogenous ETV6, decreased transcriptional repression and altered megakaryocyte maturation. Our findings underscore a key role for ETV6 in platelet formation and leukemia predisposition

    Requirement of VPS33B, a member of the Sec1/Munc18 protein family in megakaryocyte and platelet alpha-granule biogenesis

    No full text
    Bleeding problems are associated with defects in platelet a-granules, yet little is known about how these granules are formed and released. Mutations affecting VPS33B, a novel Sec1/Munc18 protein, have recently been linked to arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome. We have characterized platelets from patients with ARC syndrome and observed reduced aggregation with arachidonate and adenosine diphosphate (ADP). Structural abnormalities seen in ARC platelets included increased platelet size, a pale appearance in blood films, elevated numbers of delta-granules, and completely absent a-granules. Soluble and membrane-bound a-granule proteins were significantly decreased or undetectable in ARC platelets, suggesting that both the releasable protein pools and membrane components of a-granules were absent. The role of VPS33B in platelet granule biogenesis was evaluated by immunofluorescence microscopy in normal human megakaryocytes. VPS33B colocalized appreciably with markers of alpha-granules, moderately with late endosomes/lysosomes, minimally with delta-granules/lysosomes, and not with cis-Golgi complexes. VPS33B protein expression determined by immunoblotting confirmed the presence of VPS33B in control fibroblasts but not in ARC fibroblasts, and in normal megakaryocytes but not in platelets. We conclude that like other Sec1/Munc18 proteins, VPS33B is involved in intracellular vesicle trafficking, being essential for the development of platelet a-granules but not for granule secretion

    Megakaryocyte and platelet abnormalities in a patient with a W33C mutation in the conserved SH3-like domain of myosin heavy chain IIA

    No full text
    Heterozygous mutations in MYH9, which encodes non-muscle myosin heavy chain IIA (MHC-IIA), result in autosomal dominant inherited MYH9-related disorders characterised by macro-thrombocytopenia, granulocyte inclusions, variable sensorineural deafness, cataracts and nephritis. MHC-IIA is assembled into a complex consisting of two pairs of light chains and two heavy chains, where the latter contain a neck region, SH3-like, motor and rod domains. We describe a patient with a Trp33Cys missense mutation in the SH3-like domain of MHC-IIA. Abnormal platelet function was observed using platelet aggregometry with the agonists epinephrine and adenosine diphosphate (ADP). Patient granulocytes and megakaryocytes, but not platelets, contained abnormal MHC-IIA inclusions visualised by confocal immunofluorescence or electron microscopy. Megakaryocytes grown in culture were smaller and contained hypolobulated nuclei compared to controls. Bone marrow-derived megakaryocytes revealed a preponderance of immature forms, the presence of structurally diverse inclusion bodies, and frequent emperipolesis as assessed by electron microscopy. Platelets and leukocytes contained indistinguishable amounts of total MHC-IIA determined by immunoblotting. Molecular modelling studies indicated that mutation of Trp33 destabilises the interface between the SH3-like and motor domain of MHC-IIA, which is close to previously described motor domain mutations, implying an important structural and/or functional role for this region in MHC-IIA

    Megakaryocyte and platelet abnormalities in a patient with a W33C mutation in the conserved SH3-like domain of myosin heavy chain IIA

    No full text
    Heterozygous mutations in MYH9, which encodes non-muscle myosin heavy chain IIA (MHC-IIA), result in autosomal dominant inherited MYH9-related disorders characterised by macro-thrombocytopenia, granulocyte inclusions, variable sensorineural deafness, cataracts and nephritis. MHC-IIA is assembled into a complex consisting of two pairs of light chains and two heavy chains, where the latter contain a neck region, SH3-like, motor and rod domains. We describe a patient with a Trp33Cys missense mutation in the SH3-like domain of MHC-IIA. Abnormal platelet function was observed using platelet aggregometry with the agonists epinephrine and adenosine diphosphate (ADP). Patient granulocytes and megakaryocytes, but not platelets, contained abnormal MHC-IIA inclusions visualised by confocal immunofluorescence or electron microscopy. Megakaryocytes grown in culture were smaller and contained hypolobulated nuclei compared to controls. Bone marrow-derived megakaryocytes revealed a preponderance of immature forms, the presence of structurally diverse inclusion bodies, and frequent emperipolesis as assessed by electron microscopy. Platelets and leukocytes contained indistinguishable amounts of total MHC-IIA determined by immunoblotting. Molecular modelling studies indicated that mutation of Trp33 destabilises the interface between the SH3-like and motor domain of MHC-IIA, which is close to previously described motor domain mutations, implying an important structural and/or functional role for this region in MHC-IIA
    corecore