4,668 research outputs found

    Statistical Evaluation of NDE Reliability in the Aerospace Industry

    Get PDF
    The goal of this paper is to review the statistical methods used in the aerospace industries to evaluate NDE reliability. The techniques presented are consistent with the damage tolerant design and structural maintenance philosophies of the aerospace industry. The first part of this paper establishes the evaluation criteria and discusses the history of NDE reliability evaluations. The second part describes the state-of-the-art analysis methods through examples from the retirement for cause (RFC) inspection system evaluation. The last part of the paper discusses some techniques used to rate operator performance and deal with false calls

    Identifying a human rights–based approach to obesity for States and civil society

    Get PDF
    Summary Obesity and its comorbidities pose daunting challenges to global health and development in the 21st century. This paper reviews some commonalities between obesity and another global health challenge, the pandemic of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). International human rights law was an important catalyst for civil society movements that helped to overcome inertia and generate political will for State action in response to HIV and AIDS. Drawing on the HIV experience, the authors propose a conceptual model for a human rights?based response to obesity founded on the twin pillars of State obligations and civil society engagement. Framing States' obligations to address the global obesity pandemic as a matter of international law, informed by the examples of the United Nations ?International Guidelines on HIV/AIDS and Human Rights? and the General Comments of the United Nations human rights treaty bodies on HIV and AIDS, provides a normative framework to guide State actions and opportunities to engage the extensive accountability mechanisms of the United Nations international human rights system. In addition, it provides civil society organizations with the language and tools to demand State action on obesity. The authors call for similar authoritative guidance for States on the application of international human rights law to obesity

    Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B

    Get PDF
    Observations over the tropical Pacific during the Pacific Exploratory Mission (PEM)-Tropics B experiment (March-April 1999) are analyzed. Concentrations of CO and long-lived nonmethane hydrocarbons in the region are significantly enhanced due to transport of pollutants from northern industrial continents. This pollutant import also enhances moderately O3 concentrations but not NOx concentrations. It therefore tends to depress OH concentrations over the tropical Pacific. These effects contrast to the large enhancements of O3 and NOx concentrations and the moderate increase of OH concentrations due to biomass burning outflow during the PEM-Tropics A experiment (September-October 1996). Observed CH3I concentrations, as in PEM-Tropics A, indicate that convective mass outflux in the middle and upper troposphere is largely independent of altitude over the tropical Pacific. Constraining a one-dimensiohal model with CH3I observations yields a 10-day timescale for convective turnover of the free troposphere, a factor of 2 faster than during PEM-Tropics A. Model simulated HO2, CH2O, H2O2, and CH3OOH concentrations are generally in agreement with observations. However, simulated OH concentrations are lower (∼25%) than observations above 6 km. Whereas models tend to overestimate previous field measurements, simulated HNO3 concentrations during PEM-Tropics B are too low (a factor of 2-4 below 6 km) compared to observations. Budget analyses indicate that chemical production of O3 accounts for only 50% of chemical loss; significant transport of O3 into the region appears to take place within the tropics. Convective transport of CH3OOH enhances the production of HOx and O3 in the upper troposphere, but this effect is offset by HOx loss due to the scavenging of H2O2. Convective transport and scavenging of reactive nitrogen species imply a necessary source of 0.4-1 Tg yr-1 of NOx in the free troposphere (above 4 km) over the tropics. A large fraction of the source could be from marine lightning. Oxidation of DMS transported by convection from the boundary layer could explain the observed free tropospheric SO2 concentrations over the tropical Pacific. This source of DMS due to convection, however, would imply in the model free tropospheric concentrations much higher than observed. The model overestimate cannot be reconciled using recent kinetics measurements of the DMS-OH adduct reaction at low pressures and temperatures and may reflect enhanced OH oxidation of DMS during convection. Copyright 2001 by the American Geophysical Union

    Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B

    Get PDF
    A time-dependent photochemical box model is used to examine the photochemistry of the equatorial and southern subtropical Pacific troposphere with aircraft data obtained during two distinct seasons: the Pacific Exploratory Mission-Tropics A (PEM-Tropics A) field campaign in September and October of 1996 and the Pacific Exploratory Mission-Tropics B (PEM-Tropics B) campaign in March and April of 1999. Model-predicted values were compared to observations for selected species (e.g., NO2, OH, HO2) with generally good agreement. Predicted values of HO2 were larger than those observed in the upper troposphere, in contrast to previous studies which show a general underprediction of HO2 at upper altitudes. Some characteristics of the budgets of HOx, NOx, and peroxides are discussed. The integrated net tendency for O3 is negative over the remote Pacific during both seasons, with gross formation equal to no more than half of the gross destruction. This suggests that a continual supply of O3 into the Pacific region throughout the year must exist in order to maintain O3 levels. Integrated net tendencies for equatorial O3 showed a seasonality, with a net loss of 1.06×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 50% to 1.60×1011 molecules cm-2 s-1 during PEM-Tropics A (September). The seasonality over the southern subtropical Pacific was somewhat lower, with losses of 1.21×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 25% to 1.51×1011 molecules cm-2 s-1 during PEM-Tropics A (September). While the larger net losses during PEM-Tropics A were primarily driven by higher concentrations of O3, the ability of the subtropical atmosphere to destroy O3 was ∼30% less effective during the PEM-Tropics A (September) campaign due to a drier atmosphere and higher overhead O3 column amounts. Copyright 2001 by the American Geophysical Union

    Improving accuracy of medication identification in an older population using a medication bottle color symbol label system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this pilot study was to evaluate and refine an adjuvant system of color-specific symbols that are added to medication bottles and to assess whether this system would increase the ability of patients 65 years of age or older in matching their medication to the indication for which it was prescribed.</p> <p>Methods</p> <p>This study was conducted in two phases, consisting of three focus groups of patients from a family medicine clinic (n = 25) and a pre-post medication identification test in a second group of patient participants (n = 100). Results of focus group discussions were used to refine the medication label symbols according to themes and messages identified through qualitative triangulation mechanisms and data analysis techniques. A pre-post medication identification test was conducted in the second phase of the study to assess differences between standard labeling alone and the addition of the refined color-specific symbols. The pre-post test examined the impact of the added labels on participants' ability to accurately match their medication to the indication for which it was prescribed when placed in front of participants and then at a distance of two feet.</p> <p>Results</p> <p>Participants appreciated the addition of a visual aid on existing medication labels because it would not be necessary to learn a completely new system of labeling, and generally found the colors and symbols used in the proposed labeling system easy to understand and relevant. Concerns were raised about space constraints on medication bottles, having too much information on the bottle, and having to remember what the colors meant. Symbols and colors were modified if they were found unclear or inappropriate by focus group participants. Pre-post medication identification test results in a second set of participants demonstrated that the addition of the symbol label significantly improved the ability of participants to match their medication to the appropriate medical indication at a distance of two feet (p < 0.001) and approached significant improvement when placed directly in front of participants (p = 0.07).</p> <p>Conclusions</p> <p>The proposed medication symbol label system provides a promising adjunct to national efforts in addressing the issue of medication misuse in the home through the improvement of medication labeling. Further research is necessary to determine the effectiveness of the labeling system in real-world settings.</p

    Spontaneous vortices in the formation of Bose-Einstein condensates

    Full text link
    Phase transitions are ubiquitous in nature, ranging from protein folding and denaturisation, to the superconductor-insulator quantum phase transition, to the decoupling of forces in the early universe. Remarkably, phase transitions can be arranged into universality classes, where systems having unrelated microscopic physics exhibit identical scaling behaviour near the critical point. Here we present an experimental and theoretical study of the Bose-Einstein condensation phase transition of an atomic gas, focusing on one prominent universal element of phase transition dynamics: the spontaneous formation of topological defects during a quench through the transition. While the microscopic dynamics of defect formation in phase transitions are generally difficult to investigate, particularly for superfluid phase transitions, Bose-Einstein condensates (BECs) offer unique experimental and theoretical opportunities for probing such details. Although spontaneously formed vortices in the condensation transition have been previously predicted to occur, our results encompass the first experimental observations and statistical characterisation of spontaneous vortex formation in the condensation transition. Using microscopic theories that incorporate atomic interactions and quantum and thermal fluctuations of a finite-temperature Bose gas, we simulate condensation and observe vortex formation in close quantitative agreement with our experimental results. Our studies provide further understanding of the development of coherence in superfluids, and may allow for direct investigation of universal phase-transition dynamics.Comment: 14 pages, 6 figures. Accepted for publication in Nature. Supplementary movie files are available at http://www.physics.uq.edu.au/people/mdavis/spontaneous_vortice

    HVOF and laser cladded Fe-Cr-B coating in simulated biomass combustion: microstructure and fireside corrosion

    Get PDF
    Biomass is often considered as a low carbon alternative to fossil fuels in the power industry. However the heat exchangers in biomass plants can suffer from chloride based aggressive fireside corrosion. A commercially available amorphous Fe-Cr-B alloy was deposited onto a stainless steel substrate by HVOF thermal spray and laser cladding. The controlled environment corrosion tests were conducted in a HCl rich environment at 700°C for 250 h with and without KCl deposits. The samples were examined with XRD, SEM and EDX mapping to understand the corrosion mechanisms. In the absence of any deposits, the amorphous HVOF coating performed very well with a thin oxide growth whereas the crystalline laser cladding suffered from ~350 μm metal loss. The scales were composed of MnWO₄, Fe₂O₃, Fe₃O₄ and Cr₂O₃. When a KCl deposit was present, the HVOF sprayed coating delaminated from the substrate and MnCl₂ was found in the scale

    Can a falling tree make a noise in two forests at the same time?

    Get PDF
    It is a commonplace to claim that quantum mechanics supports the old idea that a tree falling in a forest makes no sound unless there is a listener present. In fact, this conclusion is far from obvious. Furthermore, if a tunnelling particle is observed in the barrier region, it collapses to a state in which it is no longer tunnelling. Does this imply that while tunnelling, the particle can not have any physical effects? I argue that this is not the case, and moreover, speculate that it may be possible for a particle to have effects on two spacelike separate apparatuses simultaneously. I discuss the measurable consequences of such a feat, and speculate about possible statistical tests which could distinguish this view of quantum mechanics from a ``corpuscular'' one. Brief remarks are made about an experiment underway at Toronto to investigate these issues.Comment: 9 pp, Latex, 3 figs, to appear in Proc. Obsc. Unr. Conf.; Fig 2 postscript repaired on 26.10.9
    corecore