15 research outputs found

    Association of VH4-59 Antibody Variable Gene Usage with Recognition of an Immunodominant Epitope on the HIV-1 Gag Protein

    No full text
    The human antibody response against HIV-1 infection recognizes diverse antigenic subunits of the virion, and includes a high level of antibodies to the Gag protein. We report here the isolation and characterization of a subset of Gag-specific human monoclonal antibodies (mAbs) that were prevalent in the antibody repertoire of an HIV-infected individual. Several lineages of Gag-specifc mAbs were encoded by a single antibody heavy chain variable region, VH4-59, and a representative antibody from this group designated mAb 3E4 recognized a linear epitope on the globular head of the p17 subunit of Gag. We found no evidence that mAb 3E4 exhibited any function in laboratory studies aimed at elucidating the immunologic activity, including assays for neutralization, Ab-dependent cell-mediated virus inhibition, or enhanced T cell reactivity caused by Gag-3E4 complexes. The findings suggest this immunodominant epitope in Gag protein, which is associated with VH4-59 germline gene usage, may induce a high level of B cells that encode binding but non-functional antibodies that occupy significant repertoire space following HIV infection. The studies define an additional specific molecular mechanism in the immune distraction activity of the HIV virion

    Catalyst Deactivation During One-Step Dimethyl Ether Synthesis from Synthesis Gas

    No full text
    Catalysts for direct synthesis of dimethyl ether (DME) from synthesis gas should essentially contain two functions, i.e., methanol synthesis and methanol dehydration. In the present work, the deactivation of both functions of hybrid catalysts during direct DME synthesis under industrially relevant conditions has been investigated with special focus on the influence of each reaction step on the deactivation of the catalyst function corresponding to the other step. A physical mixture of a Cu–Zn-based methanol synthesis catalyst and a ZSM-5 methanol dehydration catalyst was used. The metallic catalyst appears to deactivate due to Cu sintering, with no apparent effect from the methanol dehydration step under the conditions applied. The acid catalyst deactivates due to accumulation of hydrocarbon species formed in its pores. Synthesis gas composition, i.e., {H}2/CO ratio and {CO}2-content (which directly affects partial pressure of water), seems to influence the zeolite deactivation

    Infrarotspektrometrische Gasanalytik — Verfahren und Anwendungen —

    No full text
    corecore