89 research outputs found

    A protocol for a systematic review of knowledge translation strategies in the allied health professions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge translation (KT) aims to close the gap between knowledge and practice in order to realize the benefits of research through (a) improved health outcomes, (b) more effective health services and products, and (c) strengthened healthcare systems. While there is some understanding of strategies to put research findings into practice within nursing and medicine, we have limited knowledge of KT strategies in allied health professions. Given the interprofessional nature of healthcare, a lack of guidance for supporting KT strategies in the allied health professions is concerning. Our objective in this study is to systematically review published research on KT strategies in five allied health disciplines.</p> <p>Methods</p> <p>A medical research librarian will develop and implement search strategies designed to identify evidence that is relevant to each question of the review. Two reviewers will perform study selection and quality assessment using standard forms. For study selection, data will be extracted by two reviewers. For quality assessment, data will be extracted by one reviewer and verified by a second. Disagreements will be resolved through discussion or third party adjudication. Within each profession, data will be grouped and analyzed by research design and KT strategies using the Effective Practice and Organisation of Care Review Group classification scheme. An overall synthesis across professions will be conducted.</p> <p>Significance</p> <p>A uniprofessional approach to KT does not represent the interprofessional context it targets. Our findings will provide the first systematic overview of KT strategies used in allied health professionals' clinical practice, as well as a foundation to inform future KT interventions in allied healthcare settings.</p

    An Anillin-Ect2 Complex Stabilizes Central Spindle Microtubules at the Cortex during Cytokinesis

    Get PDF
    Cytokinesis occurs due to the RhoA-dependent ingression of an actomyosin ring. During anaphase, the Rho GEF (guanine nucleotide exchange factor) Ect2 is recruited to the central spindle via its interaction with MgcRacGAP/Cyk-4, and activates RhoA in the central plane of the cell. Ect2 also localizes to the cortex, where it has access to RhoA. The N-terminus of Ect2 binds to Cyk-4, and the C-terminus contains conserved DH (Dbl homologous) and PH (Pleckstrin Homology) domains with GEF activity. The PH domain is required for Ect2's cortical localization, but its molecular function is not known. In cultured human cells, we found that the PH domain interacts with anillin, a contractile ring protein that scaffolds actin and myosin and interacts with RhoA. The anillin-Ect2 interaction may require Ect2's association with lipids, since a novel mutation in the PH domain, which disrupts phospholipid association, weakens their interaction. An anillin-RacGAP50C (homologue of Cyk-4) complex was previously described in Drosophila, which may crosslink the central spindle to the cortex to stabilize the position of the contractile ring. Our data supports an analogous function for the anillin-Ect2 complex in human cells and one hypothesis is that this complex has functionally replaced the Drosophila anillin-RacGAP50C complex. Complexes between central spindle proteins and cortical proteins could regulate the position of the contractile ring by stabilizing microtubule-cortical interactions at the division plane to ensure the generation of active RhoA in a discrete zone

    Interaction of microtubules and actin during the post-fusion phase of exocytosis

    Get PDF
    Exocytosis is the intracellular trafficking step where a secretory vesicle fuses with the plasma membrane to release vesicle content. Actin and microtubules both play a role in exocytosis; however, their interplay is not understood. Here we study the interaction of actin and microtubules during exocytosis in lung alveolar type II (ATII) cells that secrete surfactant from large secretory vesicles. Surfactant extrusion is facilitated by an actin coat that forms on the vesicle shortly after fusion pore opening. Actin coat compression allows hydrophobic surfactant to be released from the vesicle. We show that microtubules are localized close to actin coats and stay close to the coats during their compression. Inhibition of microtubule polymerization by colchicine and nocodazole affected the kinetics of actin coat formation and the extent of actin polymerisation on fused vesicles. In addition, microtubule and actin cross-linking protein IQGAP1 localized to fused secretory vesicles and IQGAP1 silencing influenced actin polymerisation after vesicle fusion. This study demonstrates that microtubules can influence actin coat formation and actin polymerization on secretory vesicles during exocytosis

    Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population

    Get PDF
    While many reports on genetic analysis of Fusarium head blight (FHB) resistance in bread wheat have been published during the past decade, only limited information is available on FHB resistance derived from wheat relatives. In this contribution, we report on the genetic analysis of FHB resistance derived from Triticum macha (Georgian spelt wheat). As the origin of T. macha is in the Caucasian region, it is supposed that its FHB resistance differs from other well-investigated resistance sources. To introduce valuable alleles from the landrace T. macha into a modern genetic background, we adopted an advanced backcross QTL mapping scheme. A backcross-derived recombinant-inbred line population of 321 BC2F3 lines was developed from a cross of T. macha with the Austrian winter wheat cultivar Furore. The population was evaluated for Fusarium resistance in seven field experiments during four seasons using artificial inoculations. A total of 300 lines of the population were genetically fingerprinted using SSR and AFLP markers. The resulting linkage map covered 33 linkage groups with 560 markers. Five novel FHB-resistance QTL, all descending from T. macha, were found on four chromosomes (2A, 2B, 5A, 5B). Several QTL for morphological and developmental traits were mapped in the same population, which partly overlapped with FHB-resistance QTL. Only the 2BL FHB-resistance QTL co-located with a plant height QTL. The largest-effect FHB-resistance QTL in this population mapped at the spelt-type locus on chromosome 5A and was associated with the wild-type allele q, but it is unclear whether q has a pleiotropic effect on FHB resistance or is closely linked to a nearby resistance QTL

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells

    Rbf Regulates Drosophila Spermatogenesis via Control of Somatic Stem and Progenitor Cell Fate in the Larval Testis

    Get PDF
    The Drosophila testis has been fundamental to understanding how stem cells interact with their endogenous microenvironment, or niche, to control organ growth in vivo. Here, we report the identification of two independent alleles for the highly conserved tumor suppressor gene, Retinoblastoma-family protein (Rbf), in a screen for testis phenotypes in X chromosome third-instar lethal alleles. Rbf mutant alleles exhibit overproliferation of spermatogonial cells, which is phenocopied by the molecularly characterized Rbf11 null allele. We demonstrate that Rbf promotes cell-cycle exit and differentiation of the somatic and germline stem cells of the testes. Intriguingly, depletion of Rbf specifically in the germline does not disrupt stem cell differentiation, rather Rbf loss of function in the somatic lineage drives overproliferation and differentiation defects in both lineages. Together our observations suggest that Rbf in the somatic lineage controls germline stem cell renewal and differentiation non-autonomously via essential roles in the microenvironment of the germline lineage
    • 

    corecore