1,336 research outputs found

    Climate change in the Kola Peninsula, Arctic Russia, during the last 50 years from meteorological observations

    Get PDF
    Abstract The authors provide a detailed climatology and evaluation of recent climate change in the Kola Peninsula, Arctic Russia, a region influenced by both the North Atlantic and Arctic Oceans. The analysis is based on 50 years of monthly surface air temperature (SAT), precipitation (PPN), and sea level pressure (SLP) data from 10 meteorological stations for 1966–2015. Regional mean annual SAT is ~0°C: the moderating effect of the ocean is such that coastal (inland) stations have a positive (negative) value. Examined mean annual PPN totals rise from ~430 mm in the northeast of the region to ~600 mm in the west. Annual SAT in the Kola Peninsula has increased by 2.3° ± 1.0°C over the past 50 years. Seasonally, statistically significant warming has taken place in spring and fall, although the largest trend has occurred in winter. Although there has been no significant change in annual PPN, spring has become significantly wetter and fall drier. The former is associated with the only significant seasonal SLP trend (decrease). A positive winter North Atlantic Oscillation (NAO) index is generally associated with a warmer and wetter Kola Peninsula whereas a positive Siberian high (SH) index has the opposite impact. The relationship between both the NAO and SH and the SAT is broadly coherent across the region whereas their relationship with PPN varies markedly, although none of the relationships is temporally invariant. Reduced sea ice in the Barents and White Seas and associated circulation changes are likely to be the principal drivers behind the observed changes.We thank Valery Demin for supplying the SAT and PPN data for Lovozero prior to 1985. In addition, we thank the staff at the various data portals described in Section 3 for their time and effort in making the data available. GJM is supported by the UK Natural Environment Research Council (NERC) through the British Antarctic Survey research program Polar Science for Planet Earth. RMV is funded by NERC PhD studentship NE/L002507/1.This is the author accepted manuscript. It first appeared from the American Meteorological Society at http://dx.doi.org/10.1175/JCLI-D-16-0179.1

    New high-pressure phases of ammonia dihydrate

    Get PDF

    Commutator Leavitt path algebras

    Full text link
    For any field K and directed graph E, we completely describe the elements of the Leavitt path algebra L_K(E) which lie in the commutator subspace [L_K(E),L_K(E)]. We then use this result to classify all Leavitt path algebras L_K(E) that satisfy L_K(E)=[L_K(E),L_K(E)]. We also show that these Leavitt path algebras have the additional (unusual) property that all their Lie ideals are (ring-theoretic) ideals, and construct examples of such rings with various ideal structures.Comment: 24 page

    Thermoelastic properties of magnesiowustite, (Mg1-xFex)O: determination of the Anderson-Gruneisen parameter by time-of-flight neutron powder diffraction at simultaneous high pressures and temperatures

    Get PDF
    The ability to perform neutron diffraction studies at simultaneous high pressures and high temperatures is a relatively recent development. The suitability of this technique for determining P-V-T equations of state has been investigated by measuring the lattice parameters of Mg1-xFexO ( x = 0.2, 0.3, 0.4), in the range P < 10.3 GPa and 300 < T < 986 K, by time-of-flight neutron powder diffraction. Pressures were determined using metallic Fe as a marker and temperatures were measured by neutron absorption resonance radiography. Within the resolution of the experiment, no evidence was found for any change in the temperature derivative of the isothermal incompressibility, partial derivative K-T/partial derivative T, with composition. By assuming that the equation-of-state parameters either varied linearly or were invariant with composition, the 60 measured state points were fitted simultaneously to a P-V-T-x equation of state, leading to values of partial derivative K-T/partial derivative T = -0.024 (9) GPa K-1 and of the isothermal Anderson-Gruneisen parameter delta(T) = 4.0 (16) at 300 K. Two designs of simultaneous high-P/T cell were employed during this study. It appears that, by virtue of its extended pressure range, a design using toroidal gaskets is more suitable for equation-of-state studies than is the system described by Le Godec, Dove, Francis, Kohn, Marshall, Pawley, Price, Redfern, Rhodes, Ross, Schofield, Schooneveld, Syfosse, Tucker & Welch [Mineral. Mag. (2001), 65, 737-748]. (c) 2008 International Union of Crystallography Printed in Singapore - all rights reserved

    Electronic Structure Calculations with LDA+DMFT

    Full text link
    The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method are (i) building material-specific Hubbard-like many-body models and (ii) solving them in the dynamical mean-field approximation. Step (i) requires the construction of a localized one-electron basis, typically a set of Wannier functions. It also involves a number of approximations, such as the choice of the degrees of freedom for which many-body effects are explicitly taken into account, the scheme to account for screening effects, or the form of the double-counting correction. Step (ii) requires the dynamical mean-field solution of multi-orbital generalized Hubbard models. Here central is the quantum-impurity solver, which is also the computationally most demanding part of the full LDA+DMFT approach. In this chapter I will introduce the core aspects of the LDA+DMFT method and present a prototypical application.Comment: 21 pages, 7 figures. Chapter of "Many-Electron Approaches in Physics, Chemistry and Mathematics: A Multidisciplinary View", eds. V. Bach and L. Delle Site, Springer 201
    • …
    corecore