20 research outputs found

    Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model

    Get PDF
    Diet and lifestyle produce major effects on tumour incidence, prevalence, and natural history. Moderate dietary restriction has long been recognised as a natural therapy that improves health, promotes longevity, and reduces both the incidence and growth of many tumour types. Dietary restriction differs from fasting or starvation by reducing total food and caloric intake without causing nutritional deficiencies. No prior studies have evaluated the responsiveness of malignant brain cancer to dietary restriction. We found that a moderate dietary restriction of 30–40% significantly inhibited the intracerebral growth of the CT-2A syngeneic malignant mouse astrocytoma by almost 80%. The total dietary intake for the ad libitum control group (n=9) and the dietary restriction experimental group (n=10) was about 20 and 13 Kcal day−1, respectively. Overall health and vitality was better in the dietary restriction-fed mice than in the ad libitum-fed mice. Tumour microvessel density (Factor VIII immunostaining) was two-fold less in the dietary restriction mice than in the ad libitum mice, whereas the tumour apoptotic index (TUNEL assay) was three-fold greater in the dietary restriction mice than in the ad libitum mice. CT-2A tumour cell-induced vascularity was also less in the dietary restriction mice than in the ad libitum mice in the in vivo Matrigel plug assay. These findings indicate that dietary restriction inhibited CT-2A growth by reducing angiogenesis and by enhancing apoptosis. Dietary restriction may shift the tumour microenvironment from a proangiogenic to an antiangiogenic state through multiple effects on the tumour cells and the tumour-associated host cells. Our data suggest that moderate dietary restriction may be an effective antiangiogenic therapy for recurrent malignant brain cancers

    Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways

    No full text
    The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf–Mdm2–p53 and the ribosomal protein (RP)–Mdm2–p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2(C305F) mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly similar paces with median survival around 10 and 11 weeks, respectively, compared to 20 weeks for Eμ-myc transgenic mice. Because p19Arf can inhibit ribosomal biogenesis through its interaction with nucleophosmin (NPM/B23), RNA helicase DDX5 and RNA polymerase I transcription termination factor (TTF-I), it has been speculated that the p19Arf–Mdm2–p53 and the RP–Mdm2–p53 pathways might be a single p19Arf–RP–Mdm2–p53 pathway, in which p19Arf activates p53 by inhibiting RP biosynthesis; thus, p19Arf deletion or Mdm2(C305F) mutation would result in similar consequences. Here, we generated mice with concurrent p19Arf deletion and Mdm2(C305F) mutation and investigated the compound mice for tumorigenesis in the absence and the presence of oncogenic c-Myc overexpression. In the absence of Eμ-myc transgene, the Mdm2(C305F) mutation did not elicit spontaneous tumors in mice, nor did it accelerate spontaneous tumors in mice with p19Arf deletion. In the presence of Eμ-myc transgene, however, Mdm2(C305F) mutation significantly accelerated p19Arf deletion-induced lymphomagenesis and promoted rapid metastasis. We found that when p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways are independently disrupted, oncogenic c-Myc-induced p53 stabilization and activation is only partially attenuated. When both pathways are concurrently disrupted, however, c-Myc-induced p53 stabilization and activation are essentially obliterated. Thus, the p19Arf–Mdm2–p53 and the RP–Mdm2–p53 are non-redundant pathways possessing similar capabilities to activate p53 upon c-Myc overexpression

    Gene expression analysis of mouse chromosome substitution strains.

    No full text
    An analysis of transcriptional variation in the liver using a panel of B.A chromosome substitution strains identified 4209 transcripts that are differentially expressed relative to the C57BL/6J background and 1010 transcripts that are differentially expressed between C57BL/6J and A/J strains. A subset of these strains (substituting Chromosomes 1, 6, and 15) was used to identify 386 additional differentially expressed transcripts in the kidney. Approximately 15% of differentially expressed transcripts are located on the substituted chromosome. These cis-QTL are codirectionally expressed with the donor strain A/J. By comparison, trans-regulated loci comprise 85% of differentially expressed transcripts, often show opposite direction of change compared with A/J, and can be regulated by multiple chromosome substitutions. Gene expression differences in this study provide evidence for transgressive segregation: Only 438 of 4209 QTL in liver were inside the parental range. By combining QTL data with known biological functions, we were able to identify physiologic pathways altered in multiple strains. In many cases the same pathways were altered by multiple distinct chromosome substitutions. Taken together, these results suggest that widespread epistatic background effects may result in complex and overlapping transcriptional relationships among different chromosome substitution strains. Transcriptional profiling of chromosome substitution strains reveals a complex genetic architecture of transcriptional regulation

    Determination of the triple oxygen and carbon isotopic composition of CO<sub>2</sub> from atomic ion fragments formed in the ion source of the 253 Ultra high-resolution isotope ratio mass spectrometer

    Get PDF
    Rationale: Determination of δ17O values directly from CO2 with traditional gas source isotope ratio mass spectrometry is not possible due to isobaric interference of 13C16O16O on 12C17O16O. The methods developed so far use either chemical conversion or isotope equilibration to determine the δ17O value of CO2. In addition, δ13C measurements require correction for the interference from 12C17O16O on 13C16O16O since it is not possible to resolve the two isotopologues. Methods: We present a technique to determine the δ17O, δ18O and δ13C values of CO2 from the fragment ions that are formed upon electron ionization in the ion source of the Thermo Scientific 253 Ultra high-resolution isotope ratio mass spectrometer (hereafter 253 Ultra). The new technique is compared with the CO2-O2 exchange method and the 17O-correction algorithm for δ17O and δ13C values, respectively. Results: The scale contractions for δ13C and δ18O values are slightly larger for fragment ion measurements than for molecular ion measurements. The δ17O and Δ17O values of CO2 can be measured on the 17O+ fragment with an internal error that is a factor 1–2 above the counting statistics limit. The ultimate precision depends on the signal intensity and on the total time that the 17O+ beam is monitored; a precision of 14 ppm (parts per million) (standard error of the mean) was achieved in 20 hours at the University of Göttingen. The Δ17O measurements with the O-fragment method agree with the CO2-O2 exchange method over a range of Δ17O values of −0.3 to +0.7‰. Conclusions: Isotope measurements on atom fragment ions of CO2 can be used as an alternative method to determine the carbon and oxygen isotopic composition of CO2 without chemical processing or corrections for mass interferences.</p
    corecore