575 research outputs found

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson's disease associated mutations A53T and E46K.

    Get PDF
    PMCID: PMC3591419This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Parkinson's disease (PD) is pathologically characterized by the presence of Lewy bodies (LBs) in dopaminergic neurons of the substantia nigra. These intracellular inclusions are largely composed of misfolded α-synuclein (AS), a neuronal protein that is abundant in the vertebrate brain. Point mutations in AS are associated with rare, early-onset forms of PD, although aggregation of the wild-type (WT) protein is observed in the more common sporadic forms of the disease. Here, we employed multidimensional solid-state NMR experiments to assess A53T and E46K mutant fibrils, in comparison to our recent description of WT AS fibrils. We made de novo chemical shift assignments for the mutants, and used these chemical shifts to empirically determine secondary structures. We observe significant perturbations in secondary structure throughout the fibril core for the E46K fibril, while the A53T fibril exhibits more localized perturbations near the mutation site. Overall, these results demonstrate that the secondary structure of A53T has some small differences from the WT and the secondary structure of E46K has significant differences, which may alter the overall structural arrangement of the fibrils

    Focal Cerebral Magnetic Resonance Changes Associated with Partial Status Epilepticus

    Full text link
    We report 2 patients with transient abnormalities on magnetic resonance imaging (MRI) associated with partial status epilepticus (SE). A man with a 4-month history of partial seizures had complex partial SE for 9 days, with left temporal maximum on ictal EEG. Left temporal lobe T 2 signal was increased on MRI during SE, but cerebral MRI was normal 9 weeks later. A woman with “cryptogenic” temporal lobe epilepsy for 16 years had complex partial SE for 1 week, with right temporal maximum on ictal EEG. T 2 Signal was increased over the entire right temporal lobe, extending into the insula, without mass effect, on MRI 1 month after SE ended. Repeat MRI 1 month later showed marked decrease in volume of increased T 2 intensity, without gadolinium enhancement, but with mild mass effect over the right anteroinferomesial temporal areas. A gemistocytic astrocytoma was resected. Focal cerebral MRI abnormalities consistent with cerebral edema may be due to partial SE but also may indicate underlying glioma, even in long-standing partial epilepsy. Focal structural imaging changes consistent with neoplasm should be followed to full resolution after partial SE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65221/1/j.1528-1157.1994.tb02909.x.pd

    Inhibition of 26S Protease Regulatory Subunit 7 (MSS1) Suppresses Neuroinflammation

    Get PDF
    Recently, researchers have focused on immunosuppression induced by rifampicin. Our previous investigation found that rifampicin was neuroprotective by inhibiting the production of pro-inflammatory mediators, thereby suppressing microglial activation. In this study, using 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), we discovered that 26S protease regulatory subunit 7 (MSS1) was decreased in rifampicin-treated microglia. Western blot analysis verified the downregulation of MSS1 expression by rifampicin. As it is indicated that the modulation of the ubiquitin-26S proteasome system (UPS) with proteasome inhibitors is efficacious for the treatment of neuro-inflammatory disorders, we next hypothesized that silencing MSS1 gene expression might inhibit microglial inflammation. Using RNA interference (RNAi), we showed significant reduction of IkBα degradation and NF-kB activation. The production of lipopolysaccharides-induced pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), nitric oxide, cyclooxygenase-2, and prostaglandin E2 were also reduced by MSS1 gene knockdown. Taken together, our findings suggested that rifampicin inhibited microglial inflammation by suppressing MSS1 protein production. Silencing MSS1 gene expression decreased neuroinflammation. We concluded that MSS1 inhibition, in addition to anti-inflammatory rifampicin, might represent a novel mechanism for the treatment of neuroinflammatory disorders

    Resistance of Renal Cell Carcinoma to Sorafenib Is Mediated by Potentially Reversible Gene Expression

    Get PDF
    Purpose: Resistance to antiangiogenic therapy is an important clinical problem. We examined whether resistance occurs at least in part via reversible, physiologic changes in the tumor, or results solely from stable genetic changes in resistant tumor cells. Experimental Design: Mice bearing two human RCC xenografts were treated with sorafenib until they acquired resistance. Resistant 786-O cells were harvested and reimplanted into naïve mice. Mice bearing resistant A498 cells were subjected to a 1 week treatment break. Sorafenib was then again administered to both sets of mice. Tumor growth patterns, gene expression, viability, blood vessel density, and perfusion were serially assessed in treated vs control mice. Results: Despite prior resistance, reimplanted 786-O tumors maintained their ability to stabilize on sorafenib in sequential reimplantation steps. A transcriptome profile of the tumors revealed that the gene expression profile of tumors upon reimplantation reapproximated that of the untreated tumors and was distinct from tumors exhibiting resistance to sorafenib. In A498 tumors, revascularization was noted with resistance and cessation of sorafenib therapy and tumor perfusion was reduced and tumor cell necrosis enhanced with re-exposure to sorafenib. Conclusions: In two RCC cell lines, resistance to sorafenib appears to be reversible. These results support the hypothesis that resistance to VEGF pathway therapy is not solely the result of a permanent genetic change in the tumor or selection of resistant clones, but rather is due to a great extent to reversible changes that likely occur in the tumor and/or its microenvironment

    The course of the superficial peroneal nerve in relation to the ankle position: anatomical study with ankle arthroscopic implications

    Get PDF
    Despite the fact that the superficial peroneal nerve is the only nerve in the human body that can be made visible; iatrogenic damage to this nerve is the most frequently reported complication in anterior ankle arthroscopy. One of the methods to visualize the nerve is combined ankle plantar flexion and inversion. In the majority of cases, the superficial peroneal nerve can be made visible. The portals for anterior ankle arthroscopy are however created with the ankle in the neutral or slightly dorsiflexed position and not in combined plantar flexion and inversion. The purpose of this study was to undertake an anatomical study to the course of the superficial peroneal nerve in different positions of the foot and ankle. We hypothesize that the anatomical localization of the superficial peroneal nerve changes with different foot and ankle positions. In ten fresh frozen ankle specimens, a window, only affecting the skin, was made at the level of the anterolateral portal for anterior ankle arthroscopy in order to directly visualize the superficial peroneal nerve, or if divided, its terminal branches. Nerve movement was assessed from combined 10° plantar flexion and inversion to 5° dorsiflexion, standardized by the Telos stress device. Also for the 4th toe flexion, flexion of all the toes and for skin tensioning possible nerve movement was determined. The mean superficial peroneal nerve movement was 2.4 mm to the lateral side when the ankle was moved from 10° plantar flexion and inversion to the neutral ankle position and 3.6 mm to the lateral side from 10° plantar flexion and inversion to 5° dorsiflexion. Both displacements were significant (P < 0.01). The nerve consistently moves lateral when the ankle is manoeuvred from combined plantar flexion and inversion to the neutral or dorsiflexed position. If visible, it is therefore advised to create the anterolateral portal medial from the preoperative marking, in order to prevent iatrogenic damage to the superficial peroneal nerve

    Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular Magnetic Resonance (CMR) imaging offers methods for the detection of ischemia and myocardial infarction as well as visualization of the coronary arteries (MRCA). However, a direct comparison of adenosine perfusion (PERF), late gadolinium enhancement (LGE) and MRCA or the results of their combination has not been performed. Aim of the study was to evaluate the feasibility/diagnostic performance of rest/stress perfusion, late gadolinium enhancement and MRCA and their combination in patients with suspected coronary artery disease (CAD) in comparison to invasive angiography.</p> <p>Methods</p> <p>Fifty-four patients (60 ± 10 years, 35 men, CAD 48%) underwent CMR including MRCA (steady state free precession, navigator whole heart approach, spatial resolution 0.7 × 0.7 × .0.9 mm, trigger delay and temporal resolution adjusted individually), stress PERF (adenosine 140 μg/min/kg), rest PERF (SSFP, 3 short axis, 1 saturation prepulse per slice) and LGE (3D inversion recovery technique) using Gd-BOPTA. Images were analyzed visually. Stenosis >50% in invasive angiography was considered significant.</p> <p>Results</p> <p>Mean study time was 68 ± 11 minutes. Sensitivity for PERF, LGE, MRCA and the combination of PERF/LGE and PERF/LGE/MRCA was 87%, 50%, 91%, 88% and 92%, respectively and specificity 88%, 96%, 46%, 88% and 56%, respectively. If image quality of MRCA was excellent (n = 18) the combination of MRCA/PERF/LGE yield a sensitivity of 86% and specificity of 91%. However, no test or combination improved diagnostic performance significantly compared to PERF alone.</p> <p>Conclusion</p> <p>In patients with CAD, the combination of stress PERF, LGE and MRCA is feasible. When compared to invasive angiography, adenosine stress perfusion outperforms CMR coronary angiography in direct comparison and yields the best results with non-significant improvement in combination with LGE and significant deterioration in combination with MRCA. MRCA may be of additional value only in a minority of patients with excellent image quality.</p

    The Prevalence of Campylobacter amongst a Free-Range Broiler Breeder Flock Was Primarily Affected by Flock Age

    Get PDF
    Campylobacter successfully colonizes broiler chickens, but little is known about the longer term natural history of colonization, since most flocks are slaughtered at an immature age. In this study, the prevalence and genetic diversity of Campylobacter colonizing a single free-range broiler breeder flock was investigated over the course of a year. The age of the flock was the most important factor in determining both the prevalence and diversity of Campylobacter over time. There was no correlation with season, temperature, the amount of rain and sunshine, or the dynamics of colonization amongst geographically and temporally matched broiler flocks. The higher prevalence rates coincided with the age at which broiler chickens are typically slaughtered, but then in the absence of bio-security or other intervention methods, and despite changes in flock management, the prevalence fell to significantly lower levels for the remainder of the study. The genetic diversity of Campylobacter increased as the flock aged, implying that genotypes were accumulated within the flock and may persist for a long time. A better understanding of the ecology of Campylobacter within commercial chicken flocks will allow the design of more effective farm-based interventions
    corecore