119 research outputs found

    Effect of Anti-Obesity Drug on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Get PDF
    BACKGROUND: Anti-obesity drugs are widely used to prevent the complications of obesity, however, the effects of anti-obesity drugs on cardiovascular risk factors are unclear at the present time. We carried out a comprehensively systematic review and meta-analysis to assess the effects of anti-obesity drugs on cardiovascular risk factors. METHODOLOGY AND PRINCIPAL FINDINGS: We systematically searched Medline, EmBase, the Cochrane Central Register of Controlled Trials, reference lists of articles and proceedings of major meetings for relevant literatures. We included randomized placebo-controlled trials that reported the effects of anti-obesity drugs on cardiovascular risk factors compared to placebo. Overall, orlistat produced a reduction of 2.39 kg (95%CI-3.34 to -1.45) for weight, a reduction of 0.27 mmol/L (95%CI: -0.36 to -0.17) for total cholesterol, a reduction of 0.21 mmol/L (95%CI: -0.30 to -0.12) for LDL, a reduction of 0.12 mmol/L (95%CI: -0.20 to -0.04) for fasting glucose, 1.85 mmHg reduction (95%CI: -3.30 to -0.40) for SBP, and a reduction of 1.49 mmHg (95%CI: -2.39 to -0.58) for DBP. Sibutramine only showed effects on weight loss and triglycerides reduction with statistical significances. Rimonabant was associated with statistically significant effects on weight loss, SBP reduction and DBP reduction. No other significantly different effects were identified between anti-obesity therapy and placebo. CONCLUSION/SIGNIFICANCE: We identified that anti-obesity therapy was associated with a decrease of weight regardless of the type of the drug. Orlistat and rimonabant could lead to an improvement on cardiovascular risk factors. However, Sibutramine may have a direct effect on cardiovascular risk factors

    The Healing Process of Intracorporeally and In Situ Devitalized Distal Femur by Microwave in a Dog Model and Its Mechanical Properties In Vitro

    Get PDF
    Background: Limb-salvage surgery has been well recognized as a standard treatment and alternative to amputation for patients with malignant bone tumors. Various limb-sparing techniques have been developed including tumor prosthesis, allograft, autograft and graft-prosthesis composite. However, each of these methods has short- and long-term disadvantages such as nonunion, mechanical failures and poor limb function. The technique of intracorporeal devitalization of tumor-bearing bone segment in situ by microwave-induced hyperthermia after separating it from surrounding normal tissues with a safe margin is a promising limb-salvage method, which may avoid some shortcomings encountered by the above-mentioned conventional techniques. The purpose of this study is to assess the healing process and revitalization potential of the devitalized bone segment by this method in a dog model. In addition, the immediate effect of microwave on the biomechanical properties of bone tissue was also explored in an in vitro experiment. Methods: We applied the microwave-induced hyperthermia to devitalize the distal femurs of dogs in situ. Using a monopole microwave antenna, we could produce a necrotic bone of nearly 20 mm in length in distal femur. Radiography, bone scintigraphy, microangiography, histology and functional evaluation were performed at 2 weeks and 1, 2, 3, 6, 9 and 12 months postoperatively to assess the healing process. In a biomechanical study, two kinds of bone specimens, 3 and 6 cm in length, were used for compression and three-point bending test respectively immediately after extracorporeall

    Tracking down carbon inputs underground from an arid zone Australian calcrete.

    Get PDF
    Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota
    corecore