23 research outputs found

    Within-group behavioral variation promotes biased task performance and the emergence of a defensive caste in a social spider

    Get PDF
    The social spider Anelosimus studiosus exhibits a behavioral polymorphism where colony members express either a passive, tolerant behavioral tendency (social) or an aggressive, intolerant behavioral tendency (asocial). Here we test whether asocial individuals act as colony defenders by deflecting the suite of foreign (i.e., heterospecific) spider species that commonly exploit multi-female colonies. We (1) determined whether the phenotypic composition of colonies is associated with foreign spider abundance, (2) tested whether heterospecific spider abundance and diversity affect colony survival in the field, and (3) performed staged encounters between groups of A. studiosus and their colony-level predator Agelenopsis emertoni (A. emertoni)to determine whether asocial females exhibit more defensive behavior. We found that larger colonies harbor more foreign spiders, and the number of asocial colony members was negatively associated with foreign spider abundance. Additionally, colony persistence was negatively associated with the abundance and diversity of foreign spiders within colonies. In encounters with a colony-level predator, asocial females were more likely to exhibit escalatory behavior, and this might explain the negative association between the frequency of asocial females and the presence of foreign spider associates. Together, our results indicate that foreign spiders are detrimental to colony survival, and that asocial females play a defensive role in multi-female colonies

    Crayfish Recognize the Faces of Fight Opponents

    Get PDF
    The capacity to associate stimuli underlies many cognitive abilities, including recognition, in humans and other animals. Vertebrates process different categories of information separately and then reassemble the distilled information for unique identification, storage and recall. Invertebrates have fewer neural networks and fewer neural processing options so study of their behavior may reveal underlying mechanisms still not fully understood for any animal. Some invertebrates form complex social colonies and are capable of visual memory–bees and wasps, for example. This ability would not be predicted in species that interact in random pairs without strong social cohesion; for example, crayfish. They have chemical memory but the extent to which they remember visual features is unknown. Here we demonstrate that the crayfish Cherax destructor is capable of visual recognition of individuals. The simplicity of their interactions allowed us to examine the behavior and some characteristics of the visual features involved. We showed that facial features are learned during face-to-face fights, that highly variable cues are used, that the type of variability is important, and that the learning is context-dependent. We also tested whether it is possible to engineer false identifications and for animals to distinguish between twin opponents

    Visually Elicited Escape in Crabs

    No full text
    A review is given on field and laboratory studies, including intracellular recordings from the optic lobes, on the visually elicited escape response of a mangrove and a rocky shore crab. The crabs flee when the angular size of an approaching object has expanded by a critical value. Neurons which respond specifically to this stimulus were encountered in the lobula (internal medulla). Illusiory expansion produced by rotating spirals evokes no reaction. The results suggest a hypothesis on the underlying mechanism for looming detection. The direction of the crab’s escape can be understood as a compromise between a tendency away from the approaching object and towards a probable shelter since it can be described by a weighted vectorial summation of both components

    Effects of autotomy on long-term survival and growth of painted spiny lobster (Panulirus versicolor) on the Great Barrier Reef, Australia

    No full text
    The effects of autotomy (shedding of appendages) on survival and growth rates of painted spiny lobster were investigated at Northwest Island (23° 18′ S, 152° 43′ E) during the period 2003–2006. Adult lobsters were captured, tagged, and classified as either uninjured (n = 68), minimally injured (n = 39) or moderately injured (n = 19) depending on the number and type of appendages that were autotomized during capture and handling. Six to thirty-six months after release, 86 lobsters were recaptured (mean time at large = 305 days). Recapture rates of uninjured (64.7%), minimally injured (71.8%), and moderately injured lobsters (73.7%) were not significantly different. Similarly, mean annualized growth rates of uninjured, minimally injured, and moderately injured lobsters were not significantly different. This suggests that the energetic cost of a single episode of autotomy is either negligible or exists as a trade-off with some other life history trait, such as reduced reproductive performance. These results support the use of certain management tools (e.g., size limits) that prescribe release of non-legal lobsters, regardless of their injury status

    Systematic variations in microvilli banding patterns along fiddler crab rhabdoms

    No full text
    Polarisation sensitivity is based on the regular alignment of dichroic photopigment molecules within photoreceptor cells. In crustaceans, this is achieved by regularly stacking photopigment-rich microvilli in alternating orthogonal bands within fused rhabdoms. Despite being critical for the efficient detection of polarised light, very little research has focused on the detailed arrangement of these microvilli bands. We report here a number of hitherto undescribed, but functionally relevant changes in the organisation of microvilli banding patterns, both within receptors, and across the compound eye of fiddler crabs. In all ommatidia, microvilli bands increase in length from the distal to the proximal ends of the rhabdom. In equatorial rhabdoms, horizontal bands increase gradually from 3 rows of microvilli distally to 20 rows proximally. In contrast, vertical equatorial microvilli bands contain 15-20 rows of microvilli in the distal 30 μm of the rhabdom, shortening to 10 rows over the next 30 μm and then increase in length to 20 rows in parallel with horizontal bands. In the dorsal eye, horizontal microvilli occupy only half the cross-sectional area as vertical microvilli bands. Modelling absorption along the length of fiddler crab rhabdoms suggests that (1) increasing band length assures that photon absorption probability per band remains constant along the length of photoreceptors, indicating that individual bands may act as units of transduction or adaptation; (2) the different organisation of microvilli bands in equatorial and dorsal rhabdoms tune receptors to the degree and the information content of polarised light in the environment
    corecore