643 research outputs found

    The locus of legitimate interpretation in Big Data sciences : Lessons for computational social science from -omic biology and high-energy physics

    Get PDF
    This paper argues that analyses of the ways in which Big Data has been enacted in other academic disciplines can provide us with concepts that will help understand the application of Big Data to social questions. We use examples drawn from our Science and Technology Studies (STS) analyses of -omic biology and high energy physics to demonstrate the utility of three theoretical concepts: (i) primary and secondary inscriptions, (ii) crafted and found data, and (iii) the locus of legitimate interpretation. These help us to show how the histories, organisational forms, and power dynamics of a field lead to different enactments of big data. The paper suggests that these concepts can be used to help us to understand the ways in which Big Data is being enacted in the domain of the social sciences, and to outline in general terms the ways in which this enactment might be different to that which we have observed in the ‘hard’ sciences. We contend that the locus of legitimate interpretation of Big Data biology and physics is tightly delineated, found within the disciplinary institutions and cultures of these disciplines. We suggest that when using Big Data to make knowledge claims about ‘the social’ the locus of legitimate interpretation is more diffuse, with knowledge claims that are treated as being credible made from other disciplines, or even by those outside academia entirely

    A novel movement disorder in related male Labrador retrievers characterized by extreme generalized muscular stiffness

    Get PDF
    Objectives: To describe the clinical phenotype of a new motor disorder in Labrador Retrievers. Animals and Methods: Case series study. Seven young male Labrador Retrievers presented for evaluation of stiff gait. Results: All affected dogs had generalized muscular stiffness, persistent at rest and resulting in restricted joint movements. They showed a forward flexed posture, festinating gait, and bradykinesia. Signs developed between 2 and 16 months of age and tended to stabilize in adulthood. Needle electromyogram in the conscious state showed continuous motor unit activity in resting epaxial and proximal limb muscles. This activity was abolished by general anesthesia. Muscle and nerve histopathology was normal. In 2 dogs necropsied, astrocytosis was evident throughout the spinal cord gray matter, reticular formation and caudate nuclei. Decreased neuronal counts were selectively found in the spinal cord Rexed's lamina VII, but not in VIII and IX. Pedigree analysis showed that the affected dogs were from 5 related litters. Conclusions and Clinical Importance: This new hypertonicity syndrome in Labrador Retrievers is unique because of the selective distribution of the histological lesions, the lack of progression in adulthood, and its exclusive occurrence in male dogs. Pedigree analysis suggests an X‐linked hereditary disease, although other modes of inheritance cannot be ruled out with certainty. We hypothesize that altered output from basal nuclei and reticular formation together with motor neuron disinhibition caused by a decreased number of spinal cord interneurons leads to the muscular stiffnes

    Successful establishment of primary small airway cell cultures in human lung transplantation

    Get PDF
    Background: The study of small airway diseases such as post-transplant bronchiolitis obliterans syndrome (BOS) is hampered by the difficulty in assessing peripheral airway function either physiologically or directly. Our aims were to develop robust methods for sampling small airway epithelial cells (SAEC) and to establish submerged SAEC cultures for downstream experimentation

    A Survey on the Krein-von Neumann Extension, the corresponding Abstract Buckling Problem, and Weyl-Type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains

    Full text link
    In the first (and abstract) part of this survey we prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, SεIHS\geq \varepsilon I_{\mathcal{H}} for some ε>0\varepsilon >0 in a Hilbert space H\mathcal{H} to an abstract buckling problem operator. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.). In the second, and principal part of this survey, we study spectral properties for HK,ΩH_{K,\Omega}, the Krein--von Neumann extension of the perturbed Laplacian Δ+V-\Delta+V (in short, the perturbed Krein Laplacian) defined on C0(Ω)C^\infty_0(\Omega), where VV is measurable, bounded and nonnegative, in a bounded open set ΩRn\Omega\subset\mathbb{R}^n belonging to a class of nonsmooth domains which contains all convex domains, along with all domains of class C1,rC^{1,r}, r>1/2r>1/2.Comment: 68 pages. arXiv admin note: extreme text overlap with arXiv:0907.144

    Treatment delay of bone tumours, compilation of a sociodemographic risk profile: A retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone tumours are comparatively rare tumours and delays in diagnosis and treatment are common. The purpose of this study was to analyse sociodemographic risk factors for bone tumour patients in order to identify those at risk of prolonged patients delay (time span from first symptoms to consultation), professional delay (from consultation to treatment) or symptom interval (from first symptoms to treatment). Understanding these relationships might enable us to shorten time to diagnosis and therapy.</p> <p>Methods</p> <p>We carried out a retrospective analysis of 265 patients with bone tumours documenting sociodemographic factors, patient delay, professional delay and symptom interval. A multivariate explorative Cox model was performed for each delay.</p> <p>Results</p> <p>Female gender was associated with a prolonged patient delay. Age under 30 years and rural living predisposes to a prolonged professional delay and symptom interval.</p> <p>Conclusion</p> <p>Early diagnosis and prompt treatment are required for successful management of most bone tumour patients. We succeeded in identifying the histology independent risk factors of age under 30 years and rural habitation for treatment delay in bone tumour patients. Knowing about the existence of these risk groups age under 30 years and female gender could help the physician to diagnose bone tumours earlier. The causes for the treatment delays of patients living in a rural area have to be investigated further. If the delay initiates in the lower education of rural general physicians, further training about bone tumours might advance early detection. Hence the outcome of patients with bone tumours could be improved.</p

    The associations between body and knee height measurements and knee joint structure in an asymptomatic cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that knee height is a determinant of knee joint load. Nonetheless, no study has directly examined the relationship between anthropometric measures of height and knee joint structures, such as cartilage.</p> <p>Methods</p> <p>89 asymptomatic community-based adults aged 25-62 with no diagnosed history of knee arthropathy were recruited. Anthropometric data (knee height and body height) were obtained by standard protocol, while tibial cartilage volume and defects, as well as bone area were determined from magnetic resonance imaging. Static knee alignment was measured from the joint radiograph.</p> <p>Results</p> <p>All anthropometric height measures were associated with increasing compartmental tibial bone area (<it>p </it>≤ 0.05). Although knee height was associated with tibial cartilage volume (e.g. β = 27 mm<sup>3 </sup>95% CI 7- 48; <it>p </it>= 0.009 for the medial compartment), these relationship no longer remained significant when knee height as a percentage of body height was analysed. Knee height as a percentage of body height was associated with a reduced risk of medial tibial cartilage defects (odds ratio 0.6; 95% confidence interval 0.4 - 1.0; <it>p </it>= 0.05).</p> <p>Conclusion</p> <p>The association between increased anthropometric height measures and increased tibial bone area may reflect inherently larger bony structures. However the beneficial associations demonstrated with cartilage morphology suggest that an increased knee height may confer a beneficial biomechanical environment to the chondrocyte of asymptomatic adults.</p

    Can we derive an 'exchange rate' between descriptive and preference-based outcome measures for stroke? Results from the transfer to utility (TTU) technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stroke-specific outcome measures and descriptive measures of health-related quality of life (HRQoL) are unsuitable for informing decision-makers of the broader consequences of increasing or decreasing funding for stroke interventions. The quality-adjusted life year (QALY) provides a common metric for comparing interventions over multiple dimensions of HRQoL and mortality differentials. There are, however, many circumstances when – because of timing, lack of foresight or cost considerations – only stroke-specific or descriptive measures of health status are available and some indirect means of obtaining QALY-weights becomes necessary. In such circumstances, the use of regression-based transformations or mappings can circumvent the failure to elicit QALY-weights by allowing predicted weights to proxy for observed weights. This regression-based approach has been dubbed 'Transfer to Utility' (TTU) regression. The purpose of the present study is to demonstrate the feasibility and value of TTU regression in stroke by deriving transformations or mappings from stroke-specific and generic but descriptive measures of health status to a generic preference-based measure of HRQoL in a sample of Australians with a diagnosis of acute stroke. Findings will quantify the additional error associated with the use of condition-specific to generic transformations in stroke.</p> <p>Methods</p> <p>We used TTU regression to derive empirical transformations from three commonly used descriptive measures of health status for stroke (NIHSS, Barthel and SF-36) to a preference-based measure (AQoL) suitable for attaching QALY-weights to stroke disease states; based on 2570 observations drawn from a sample of 859 patients with stroke.</p> <p>Results</p> <p>Transformations from the SF-36 to the AQoL explained up to 71.5% of variation in observed AQoL scores. Differences between mean predicted and mean observed AQoL scores from the 'severity-specific' item- and subscale-based SF-36 algorithms and from the 'moderate to severe' index- and item-based Barthel algorithm were neither clinically nor statistically significant when 'low severity' SF-36 transformations were used to predict AQoL scores for patients in the NIHSS = 0 and NIHSS = 1–5 subgroups and when 'moderate to severe severity' transformations were used to predict AQoL scores for patients in the NIHSS ≥ 6 subgroup. In contrast, the difference between mean predicted and mean observed AQoL scores from the NIHSS algorithms and from the 'low severity' Barthel algorithms reached levels that could mask minimally important differences on the AQoL scale.</p> <p>Conclusion</p> <p>While our NIHSS to AQoL transformations proved unsuitable for most applications, our findings demonstrate that stroke-relevant outcome measures such as the SF-36 and Barthel Index can be adequately transformed to preference-based measures for the purposes of economic evaluation.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore